-
1
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper G F, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 1992, 9 (4): 309-347
-
(1992)
Machine Learning
, vol.9
, Issue.4
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
2
-
-
0028482006
-
Learning Bayesian belief networks: An approach based on the MDL principle
-
Lam W, Bacchus F. Learning Bayesian belief networks: an approach based on the MDL principle. Computational Intelligence, 1994, 10(4): 269-293
-
(1994)
Computational Intelligence
, vol.10
, Issue.4
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
4
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman D, Geiger D, Chickering D M. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995, 20(3): 197-243
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
5
-
-
0036567524
-
Learning Bayesian networks from data: An efficient approach based on information theory
-
Cheng Jie, Bell D, Liu Wei-ru. Learning Bayesian networks from data: An efficient approach based on information theory. Artificial Intelligence, 2002, 137 (1-2): 43-90
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 43-90
-
-
Jie, C.1
Bell, D.2
Wei-Ru, L.3
-
6
-
-
0004675530
-
Learning Gaussian networks
-
Microsoft Research, Redmond
-
Geiger D, Heckerman D. Learning Gaussian networks. Technical Report MSR-TR-94-10, Microsoft Research, Redmond, 1994
-
(1994)
Technical Report
, vol.MSR-TR-94-10
-
-
Geiger, D.1
Heckerman, D.2
-
7
-
-
0027558070
-
Causal probabilistic networks with both discrete and continuous variables
-
Diesen K G. Causal probabilistic networks with both discrete and continuous variables. IEEE Trans, on Pattern Analysis and Machine Intelligence, 1993, 3(15): 275-279
-
(1993)
IEEE Trans, on Pattern Analysis and Machine Intelligence
, vol.3
, Issue.15
, pp. 275-279
-
-
Diesen, K.G.1
-
8
-
-
2342533082
-
On convergence properties of the em algorithm for Gaussian mixtures
-
Xu L, Jordan M I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 1996, 8 (1): 129-151
-
(1996)
Neural Computation
, vol.8
, Issue.1
, pp. 129-151
-
-
Xu, L.1
Jordan, M.I.2
-
9
-
-
0344009394
-
Learning hybrid Bayesian networks from data
-
Kluwer Academic Publishers
-
Monti S, Cooper G F. Learning hybrid Bayesian networks from data. Learning in Graphical Models, Kluwer Academic Publishers, 1998
-
(1998)
Learning in Graphical Models
-
-
Monti, S.1
Cooper, G.F.2
-
12
-
-
0036702899
-
Discretizing continuous variables of Bayesian networks based on genetic algorithms
-
Wang F, Liu D Y, Xue W X. Discretizing continuous variables of Bayesian networks based on genetic algorithms. Chinese Journal of Computers, 2002, 25(8), 794-800.
-
(2002)
Chinese Journal of Computers
, vol.25
, Issue.8
, pp. 794-800
-
-
Wang, F.1
Liu, D.Y.2
Xue, W.X.3
-
13
-
-
0003846047
-
Learning Bayesian networks is NP-Hard
-
Microsoft Research, Redmond
-
Chickering D M. Learning Bayesian networks is NP-Hard. Technical Report MSR-TR-94-17, Microsoft Research, Redmond, 1994
-
(1994)
Technical Report
, vol.MSR-TR-94-17
-
-
Chickering, D.M.1
-
14
-
-
0004282858
-
-
Beijing: China Higher Education Press, Berlin: Springer-Verlag
-
Mao S S, Wang J L, Pu X L. Advanced mathematical statistics. 1th ed., Beijing: China Higher Education Press, Berlin: Springer-Verlag, 1998, 401-459.
-
(1998)
Advanced Mathematical Statistics. 1th Ed.
, pp. 401-459
-
-
Mao, S.S.1
Wang, J.L.2
Pu, X.L.3
-
15
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
-
Geman S, Geman D. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-742
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, Issue.6
, pp. 721-742
-
-
Geman, S.1
Geman, D.2
-
17
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zeroone loss
-
Domingos P, Pazzani M. On the optimality of the simple Bayesian classifier under zeroone loss. Machine Learning, 1997, 29(2-3): 103-130
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
|