메뉴 건너뛰기




Volumn 4093 LNAI, Issue , 2006, Pages 448-456

Learning Bayesian networks structure with continuous variables

Author keywords

[No Author keywords available]

Indexed keywords

DATA REDUCTION; ITERATIVE METHODS; LEARNING SYSTEMS; OPTIMAL CONTROL SYSTEMS; OPTIMIZATION; CLUSTERING ALGORITHMS; DATA MINING;

EID: 33749385876     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11811305_49     Document Type: Conference Paper
Times cited : (4)

References (17)
  • 1
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G F, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 1992, 9 (4): 309-347
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 2
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • Lam W, Bacchus F. Learning Bayesian belief networks: an approach based on the MDL principle. Computational Intelligence, 1994, 10(4): 269-293
    • (1994) Computational Intelligence , vol.10 , Issue.4 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 4
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman D, Geiger D, Chickering D M. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995, 20(3): 197-243
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 5
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An efficient approach based on information theory
    • Cheng Jie, Bell D, Liu Wei-ru. Learning Bayesian networks from data: An efficient approach based on information theory. Artificial Intelligence, 2002, 137 (1-2): 43-90
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 43-90
    • Jie, C.1    Bell, D.2    Wei-Ru, L.3
  • 6
    • 0004675530 scopus 로고
    • Learning Gaussian networks
    • Microsoft Research, Redmond
    • Geiger D, Heckerman D. Learning Gaussian networks. Technical Report MSR-TR-94-10, Microsoft Research, Redmond, 1994
    • (1994) Technical Report , vol.MSR-TR-94-10
    • Geiger, D.1    Heckerman, D.2
  • 7
    • 0027558070 scopus 로고
    • Causal probabilistic networks with both discrete and continuous variables
    • Diesen K G. Causal probabilistic networks with both discrete and continuous variables. IEEE Trans, on Pattern Analysis and Machine Intelligence, 1993, 3(15): 275-279
    • (1993) IEEE Trans, on Pattern Analysis and Machine Intelligence , vol.3 , Issue.15 , pp. 275-279
    • Diesen, K.G.1
  • 8
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the em algorithm for Gaussian mixtures
    • Xu L, Jordan M I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation, 1996, 8 (1): 129-151
    • (1996) Neural Computation , vol.8 , Issue.1 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 9
    • 0344009394 scopus 로고    scopus 로고
    • Learning hybrid Bayesian networks from data
    • Kluwer Academic Publishers
    • Monti S, Cooper G F. Learning hybrid Bayesian networks from data. Learning in Graphical Models, Kluwer Academic Publishers, 1998
    • (1998) Learning in Graphical Models
    • Monti, S.1    Cooper, G.F.2
  • 10
    • 0002593344 scopus 로고
    • Mult-interval discretization of continuous-valued attributes for calssification learning
    • Chambery, France
    • Fayyad U, Irani K. Mult-interval discretization of continuous-valued attributes for calssification learning. In Proceedings International Joint Conference on Artificial Intelligence, Chambery, France, 1993, 1022-1027
    • (1993) Proceedings International Joint Conference on Artificial Intelligence , pp. 1022-1027
    • Fayyad, U.1    Irani, K.2
  • 12
    • 0036702899 scopus 로고    scopus 로고
    • Discretizing continuous variables of Bayesian networks based on genetic algorithms
    • Wang F, Liu D Y, Xue W X. Discretizing continuous variables of Bayesian networks based on genetic algorithms. Chinese Journal of Computers, 2002, 25(8), 794-800.
    • (2002) Chinese Journal of Computers , vol.25 , Issue.8 , pp. 794-800
    • Wang, F.1    Liu, D.Y.2    Xue, W.X.3
  • 13
    • 0003846047 scopus 로고
    • Learning Bayesian networks is NP-Hard
    • Microsoft Research, Redmond
    • Chickering D M. Learning Bayesian networks is NP-Hard. Technical Report MSR-TR-94-17, Microsoft Research, Redmond, 1994
    • (1994) Technical Report , vol.MSR-TR-94-17
    • Chickering, D.M.1
  • 17
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zeroone loss
    • Domingos P, Pazzani M. On the optimality of the simple Bayesian classifier under zeroone loss. Machine Learning, 1997, 29(2-3): 103-130
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.