-
2
-
-
1842413643
-
-
10.1126/science.278.5336.252
-
M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997). 10.1126/science.278.5336.252
-
(1997)
Science
, vol.278
, pp. 252
-
-
Reed, M.A.1
Zhou, C.2
Muller, C.J.3
Burgin, T.P.4
Tour, J.M.5
-
3
-
-
33947272067
-
-
10.1038/nnano.2006.130
-
N. J. Tao, Nat. Nanotechnol. 1, 173 (2006). 10.1038/nnano.2006.130
-
(2006)
Nat. Nanotechnol.
, vol.1
, pp. 173
-
-
Tao, N.J.1
-
5
-
-
39749192478
-
-
10.1126/science.1146556
-
M. Galperin, M. A. Ratner, A. Nitzan, and A. Troisi, Science 319, 1056 (2008). 10.1126/science.1146556
-
(2008)
Science
, vol.319
, pp. 1056
-
-
Galperin, M.1
Ratner, M.A.2
Nitzan, A.3
Troisi, A.4
-
6
-
-
33750737455
-
-
10.1063/1.2382744
-
Y. Qi, D. Guan, Y. Jiang, C. Liu, and D. Zhang, Appl. Phys. Lett. 89, 182119 (2006). 10.1063/1.2382744
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 182119
-
-
Qi, Y.1
Guan, D.2
Jiang, Y.3
Liu, C.4
Zhang, D.5
-
8
-
-
0037206850
-
-
10.1038/nature01103
-
R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert, and J. M. van Ruitenbeek, Nature (London) 419, 906 (2002). 10.1038/nature01103
-
(2002)
Nature (London)
, vol.419
, pp. 906
-
-
Smit, R.H.M.1
Noat, Y.2
Untiedt, C.3
Lang, N.D.4
Van Hemert, M.C.5
Van Ruitenbeek, J.M.6
-
9
-
-
0042824119
-
-
10.1088/0957-4484/14/8/201
-
J. C. Cuevas, J. Heurich, F. Pauly, W. Wenzel, and G. Schön, Nanotechnology 14, R29 (2003). 10.1088/0957-4484/14/8/201
-
(2003)
Nanotechnology
, vol.14
, pp. 29
-
-
Cuevas, J.C.1
Heurich, J.2
Pauly, F.3
Wenzel, W.4
Schön, G.5
-
10
-
-
1542374004
-
-
10.1103/PhysRevB.69.041402
-
Y. García, J. J. Palacios, E. SanFabián, J. A. Vergés, A. J. Pérez-Jiménez, and E. Louis, Phys. Rev. B 69, 041402 (R) (2004). 10.1103/PhysRevB.69.041402
-
(2004)
Phys. Rev. B
, vol.69
, pp. 041402
-
-
García, Y.1
Palacios, J.J.2
Sanfabián, E.3
Vergés, J.A.4
Pérez-Jiménez, A.J.5
Louis, E.6
-
13
-
-
28644437276
-
-
10.1103/PhysRevB.71.161402
-
D. Djukic, K. S. Thygesen, C. Untiedt, R. H. M. Smit, K. W. Jacobsen, and J. M. van Ruitenbeek, Phys. Rev. B 71, 161402 (R) (2005). 10.1103/PhysRevB.71. 161402
-
(2005)
Phys. Rev. B
, vol.71
, pp. 161402
-
-
Djukic, D.1
Thygesen, K.S.2
Untiedt, C.3
Smit, R.H.M.4
Jacobsen, K.W.5
Van Ruitenbeek, J.M.6
-
14
-
-
2342453768
-
-
10.1021/nl049870v
-
W. Wang, T. Lee, I. Kretzschmar, and M. A. Read, Nano Lett. 4, 643 (2004). 10.1021/nl049870v
-
(2004)
Nano Lett.
, vol.4
, pp. 643
-
-
Wang, W.1
Lee, T.2
Kretzschmar, I.3
Read, M.A.4
-
16
-
-
24344435119
-
-
10.1021/nl050789h
-
J. Jiang, M. Kula, W. Lu, and Y. Luo, Nano Lett. 5, 1551 (2005). 10.1021/nl050789h
-
(2005)
Nano Lett.
, vol.5
, pp. 1551
-
-
Jiang, J.1
Kula, M.2
Lu, W.3
Luo, Y.4
-
19
-
-
34547555143
-
-
10.1063/1.2166362
-
G. C. Slomon, A. Gagliardi, A. Pecchia, T. Frauenheim, A. Di Carlo, J. R. Reimers, and N. S. Hush, J. Chem. Phys. 124, 094704 (2006). 10.1063/1.2166362
-
(2006)
J. Chem. Phys.
, vol.124
, pp. 094704
-
-
Slomon, G.C.1
Gagliardi, A.2
Pecchia, A.3
Frauenheim, T.4
Di Carlo, A.5
Reimers, J.R.6
Hush, N.S.7
-
20
-
-
2342630051
-
-
10.1021/nl049871n;
-
J. G. Kushmerick, J. Lazorcik, C. H. Patterson, and R. Shashidhar, Nano Lett. 4, 639 (2004) 10.1021/nl049871n
-
(2004)
Nano Lett.
, vol.4
, pp. 639
-
-
Kushmerick, J.G.1
Lazorcik, J.2
Patterson, C.H.3
Shashidhar, R.4
-
21
-
-
0037136811
-
-
10.1021/jp020968c
-
H. S. Kato, J. Noh, M. Hara, and M. Kawai, J. Phys. Chem. B 106, 9655 (2002). 10.1021/jp020968c
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 9655
-
-
Kato, H.S.1
Noh, J.2
Hara, M.3
Kawai, M.4
-
22
-
-
35948996612
-
-
10.1038/nnano.2007.345
-
Z. Huang, F. Chen, R. D'Agosta, P. A. Bennett, M. Di Ventra, and N. J. Tao, Nat. Nanotechnol. 2, 698 (2007). 10.1038/nnano.2007.345
-
(2007)
Nat. Nanotechnol.
, vol.2
, pp. 698
-
-
Huang, Z.1
Chen, F.2
D'Agosta, R.3
Bennett, P.A.4
Di Ventra, M.5
Tao, N.J.6
-
26
-
-
25344463656
-
-
10.1103/PhysRevB.52.5335;
-
N. D. Lang, Phys. Rev. B 52, 5335 (1995) 10.1103/PhysRevB.52.5335
-
(1995)
Phys. Rev. B
, vol.52
, pp. 5335
-
-
Lang, N.D.1
-
27
-
-
0037081414
-
-
10.1103/PhysRevB.65.045402
-
M. Di Ventra and N. D. Lang, Phys. Rev. B 65, 045402 (2001). 10.1103/PhysRevB.65.045402
-
(2001)
Phys. Rev. B
, vol.65
, pp. 045402
-
-
Di Ventra, M.1
Lang, N.D.2
-
28
-
-
58149267000
-
-
Density-functional theory in local-density approximation may underestimate the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for certain molecules. Quantitative description may not be accurate for insulating molecule. However, the hydrogen junction is in conducting state which lies in the reliable regime that the current approach can be applied.
-
Density-functional theory in local-density approximation may underestimate the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for certain molecules. Quantitative description may not be accurate for insulating molecule. However, the hydrogen junction is in conducting state which lies in the reliable regime that the current approach can be applied.
-
-
-
-
29
-
-
33745748485
-
-
10.1021/nl0608285
-
Z. Huang, B. Xu, Y.-C. Chen, M. Di Ventra, and N. J. Tao, Nano Lett. 6, 1240 (2006). 10.1021/nl0608285
-
(2006)
Nano Lett.
, vol.6
, pp. 1240
-
-
Huang, Z.1
Xu, B.2
Chen, Y.-C.3
Di Ventra, M.4
Tao, N.J.5
-
30
-
-
58149270312
-
-
We employed the GAUSSIAN03 program to evaluate the vibrational modes of H2, D2, and HD molecule bonding to two Pt atoms at DFT level.
-
We employed the GAUSSIAN03 program to evaluate the vibrational modes of H2, D2, and HD molecule bonding to two Pt atoms at DFT level.
-
-
-
-
31
-
-
0006235902
-
-
We estimated the thermal current to dissipate the heat to electrodes following the weak link model by 10.1103/PhysRevB.64.155320;
-
We estimated the thermal current to dissipate the heat to electrodes following the weak link model by K. R. Patton and M. R. Geller, Phys. Rev. B 64, 155320 (2001). The Young's modulus Y≈2.748× 1011 dyne/ cm2 was calculated with total-energy calculations. We selected the effective length and effective cross section as l≈1.86 a.u. and A≈3.14 (a.u.) 2, respectively. Although these parameters may quantitatively affect the magnitude of thermal current, the features of local heating are highly consistent within the reasonable range of tunable parameters. The spectral densities were estimated from the dispersion relation of the surface phonon in Pt: vL ≈3.60× 105 cm/s and vT ≈1.78× 105 cm/s 10.1103/PhysRevB.64.155320
-
(2001)
Phys. Rev. B
, vol.64
, pp. 155320
-
-
Patton, K.R.1
Geller, M.R.2
-
32
-
-
28244497032
-
-
see, for example, 10.1103/PhysRevB.71.245409
-
see, for example, S. Hong, T. S. Rahman, R. Heid, and K. P. Bohnen, Phys. Rev. B 71, 245409 (2005). 10.1103/PhysRevB.71.245409
-
(2005)
Phys. Rev. B
, vol.71
, pp. 245409
-
-
Hong, S.1
Rahman, T.S.2
Heid, R.3
Bohnen, K.P.4
-
34
-
-
15744365007
-
-
10.1103/PhysRevB.71.041402
-
Z. Yang, M. Chshiev, M. Zwolak, Y.-C. Chen, and M. Di Ventra, Phys. Rev. B 71, 041402 (R) (2005). 10.1103/PhysRevB.71.041402
-
(2005)
Phys. Rev. B
, vol.71
, pp. 041402
-
-
Yang, Z.1
Chshiev, M.2
Zwolak, M.3
Chen, Y.-C.4
Di Ventra, M.5
|