-
1
-
-
0034720290
-
-
K. Schwab, E A. Henriksen, J M. Worlock, and M L. Roukes, Nature (London)404, 974 (2000).
-
(2000)
Nature (London)
, vol.404
, pp. 974
-
-
Schwab, K.1
Henriksen, E.A.2
Worlock, J.M.3
Roukes, M.L.4
-
3
-
-
0001529854
-
-
B J. van Wees, H. van Houten, C W J. Beenakker, J G. Williamson, L P. Kouwenhoven, D. van der Marcel, and C T. Foxen, Phys. Rev. Lett.60, 848 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.60
, pp. 848
-
-
van Wees, B.J.1
van Houten, H.2
Beenakker, C.W.J.3
Williamson, J.G.4
Kouwenhoven, L.P.5
van der Marcel, D.6
Foxen, C.T.7
-
4
-
-
0001344261
-
-
D A. Wharam, T J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J E. Frost, D G. Hasko, D C. Peacock, D A. Ritchie, and G A C. Jones, J. Phys. C21, L209 (1988).
-
(1988)
J. Phys. C
, vol.21
, pp. L209
-
-
Wharam, D.A.1
Thornton, T.J.2
Newbury, R.3
Pepper, M.4
Ahmed, H.5
Frost, J.E.6
Hasko, D.G.7
Peacock, D.C.8
Ritchie, D.A.9
Jones, G.A.C.10
-
5
-
-
37149037543
-
-
H. Ehrenreich, D. Turnbull, Academic Press, San Diego, For a review see, and, in, edited by, and, 44
-
For a review see C W J. Beenakker and H. van Houten, in Solid State Physics: Advances in Research and Applications, edited by H. Ehrenreich and D. Turnbull (Academic Press, San Diego, 1991), Vol. 44.
-
(1991)
Solid State Physics: Advances in Research and Applications
-
-
Beenakker, C.W.J.1
van Houten, H.2
-
6
-
-
0003957805
-
-
M. Reed, Academic Press, San Diego, in, edited by, 35
-
M. Büttiker, in Semiconductors and Semimetals, edited by M. Reed (Academic Press, San Diego, 1992), Vol. 35.
-
(1992)
Semiconductors and Semimetals
-
-
Büttiker, M.1
-
7
-
-
85038916080
-
-
The Landauer formula can be applied to the case of weak tunneling provided one includes an energy-dependent transmission probability for each channel. However, these transmission probabilities have to be calculated microscopically, which, in the weak-tunneling limit, amounts to using our approach
-
The Landauer formula can be applied to the case of weak tunneling provided one includes an energy-dependent transmission probability for each channel. However, these transmission probabilities have to be calculated microscopically, which, in the weak-tunneling limit, amounts to using our approach.
-
-
-
-
9
-
-
85038958856
-
-
See also G. D. Mahan, 3rd ed. (Plenum, New York, 2000)
-
See also G. D. Mahan, Many-Particle Physics, 3rd ed. (Plenum, New York, 2000).
-
-
-
-
16
-
-
0000375714
-
-
L W. Molenkamp, Th. Gravier, H. van Houten, O J A. Buijk, M A A. Mabesoone, and C T. Foxen, Phys. Rev. Lett.68, 3765 (1992).
-
(1992)
Phys. Rev. Lett.
, vol.68
, pp. 3765
-
-
Molenkamp, L.W.1
Gravier, T.2
van Houten, H.3
Buijk, O.J.A.4
Mabesoone, M.A.A.5
Foxen, C.T.6
-
19
-
-
85038916437
-
-
Note that (formula presented)
-
Note that (formula presented).
-
-
-
-
21
-
-
85038942326
-
-
This is correct only at the low energies of interest in the present work. At higher energies it is of course possible to have forbidden regions, for example, in a vibrational band-gap structure, or simply at energies higher than the acoustic and optical phonon bands of an ordinary crystal
-
This is correct only at the low energies of interest in the present work. At higher energies it is of course possible to have forbidden regions, for example, in a vibrational band-gap structure, or simply at energies higher than the acoustic and optical phonon bands of an ordinary crystal.
-
-
-
-
23
-
-
85038897970
-
-
Here ‘(formula presented)’ denotes the Rayleigh branch
-
Here ‘(formula presented)’ denotes the Rayleigh branch.
-
-
-
-
24
-
-
85038937993
-
-
It is useful to compare this result to the corresponding, spectral density of an isotropic elastic continuum, calculated with periodic boundary conditions, (formula presented)
-
It is useful to compare this result to the corresponding bulk spectral density of an isotropic elastic continuum, calculated with periodic boundary conditions, (formula presented)
-
-
-
|