메뉴 건너뛰기




Volumn 28, Issue 24, 2008, Pages 7504-7513

Complementary roles of yeast rad4p and rad34p in nucleotide excision repair of active and inactive rRNA gene chromatin

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN RAD34P; PROTEIN RAD4P; RIBOSOME DNA; RIBOSOME RNA; UNCLASSIFIED DRUG; XERODERMA PIGMENTOSUM GROUP C PROTEIN;

EID: 57349086174     PISSN: 02707306     EISSN: None     Source Type: Journal    
DOI: 10.1128/MCB.00137-08     Document Type: Article
Times cited : (22)

References (66)
  • 1
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • Baker-Brachmann, C., A. Davies, G. J. Cost, E. Caputo, J. Li, P. Hieter, and J. D. Boeke. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115-132.
    • (1998) Yeast , vol.14 , pp. 115-132
    • Baker-Brachmann, C.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.5    Hieter, P.6    Boeke, J.D.7
  • 2
    • 0028356906 scopus 로고
    • Yeast nucleotide excision repair proteins Rad2 and Rad4 interact with RNA polymerase II basal transcription factor b (TFIIH)
    • Bardwell, A. J., L. Bardwell, N. Iyer, J. Q. Svejstrup, W. J. Feaver, R. D. Kornberg, and E. C. Friedberg. 1994. Yeast nucleotide excision repair proteins Rad2 and Rad4 interact with RNA polymerase II basal transcription factor b (TFIIH). Mol. Cell. Biol. 14:3569-3576.
    • (1994) Mol. Cell. Biol , vol.14 , pp. 3569-3576
    • Bardwell, A.J.1    Bardwell, L.2    Iyer, N.3    Svejstrup, J.Q.4    Feaver, W.J.5    Kornberg, R.D.6    Friedberg, E.C.7
  • 3
    • 0021905437 scopus 로고
    • DNA repair in an active gene: Removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall
    • Bohr, V. A., and P. C. Hanawalt. 1985. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40:359-369.
    • (1985) Cell , vol.40 , pp. 359-369
    • Bohr, V.A.1    Hanawalt, P.C.2
  • 4
    • 0035173266 scopus 로고    scopus 로고
    • In vivo binding and hierarchy of assembly of the yeast RNA polymerase I transcription factors
    • Bordi, L., F. Cioci, and G. Camilloni. 2001. In vivo binding and hierarchy of assembly of the yeast RNA polymerase I transcription factors. Mol. Biol. Cell 12:753-760.
    • (2001) Mol. Biol. Cell , vol.12 , pp. 753-760
    • Bordi, L.1    Cioci, F.2    Camilloni, G.3
  • 6
    • 21844479840 scopus 로고    scopus 로고
    • The yeast rDNA locus: A model system to study DNA repair in chromatin
    • Conconi, A. 2005. The yeast rDNA locus: a model system to study DNA repair in chromatin. DNA Rep. 4:897-908.
    • (2005) DNA Rep , vol.4 , pp. 897-908
    • Conconi, A.1
  • 7
    • 0037154203 scopus 로고    scopus 로고
    • Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast
    • Conconi, A., V. A. Bespalov, and M. J. Smerdon. 2002. Transcription-coupled repair in RNA polymerase I-transcribed genes of yeast. Proc. Natl. Acad. Sci. USA 99:649-654.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 649-654
    • Conconi, A.1    Bespalov, V.A.2    Smerdon, M.J.3
  • 9
    • 0033105605 scopus 로고    scopus 로고
    • Tight correlation between inhibition of DNA repair in vitro and transcription factor IIIA binding in a 5S ribosomal RNA gene
    • Conconi, A., X. Liu, L. Koriazova, E. J. Ackerman, and M. J. Smerdon. 1999. Tight correlation between inhibition of DNA repair in vitro and transcription factor IIIA binding in a 5S ribosomal RNA gene. EMBO J. 18:1387-1396.
    • (1999) EMBO J , vol.18 , pp. 1387-1396
    • Conconi, A.1    Liu, X.2    Koriazova, L.3    Ackerman, E.J.4    Smerdon, M.J.5
  • 10
    • 27644483099 scopus 로고    scopus 로고
    • Repair-independent chromatin assembly onto active ribosomal genes in yeast after UV irradiation
    • Conconi, A., M. Paquette, D. Fahy, V. A. Bespalov, and M. J. Smerdon. 2005. Repair-independent chromatin assembly onto active ribosomal genes in yeast after UV irradiation. Mol. Cell. Biol. 25:9773-9783.
    • (2005) Mol. Cell. Biol , vol.25 , pp. 9773-9783
    • Conconi, A.1    Paquette, M.2    Fahy, D.3    Bespalov, V.A.4    Smerdon, M.J.5
  • 11
    • 0024392359 scopus 로고
    • Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle
    • Conconi, A., R. M. Widmer, T. Koller, and J. M. Sogo. 1989. Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57:753-776.
    • (1989) Cell , vol.57 , pp. 753-776
    • Conconi, A.1    Widmer, R.M.2    Koller, T.3    Sogo, J.M.4
  • 12
    • 0027270476 scopus 로고
    • Chromatin structure and transcription of rDNA in yeast Saccharomyces cerevisiae
    • Dammann, R., R. Lucchini, T. Koller, and J. M. Sogo. 1993. Chromatin structure and transcription of rDNA in yeast Saccharomyces cerevisiae. Nucleic Acids Res. 21:2331-2338.
    • (1993) Nucleic Acids Res , vol.21 , pp. 2331-2338
    • Dammann, R.1    Lucchini, R.2    Koller, T.3    Sogo, J.M.4
  • 13
    • 0029112540 scopus 로고
    • Transcription in the yeast rRNA gene locus: Distribution of the active gene copies and chromatin structure of their flanking regulatory sequences
    • Dammann, R., R. Lucchini, T. Koller, and J. M. Sogo. 1995. Transcription in the yeast rRNA gene locus: distribution of the active gene copies and chromatin structure of their flanking regulatory sequences. Mol. Cell. Biol. 15:5294-5303.
    • (1995) Mol. Cell. Biol , vol.15 , pp. 5294-5303
    • Dammann, R.1    Lucchini, R.2    Koller, T.3    Sogo, J.M.4
  • 14
    • 20344368817 scopus 로고    scopus 로고
    • The Rad4 homologue YDR314C is essential for strand-specific repair of RNA polymerase I-transcribed rDNA in Saccharomyces cerevisiae
    • den Dulk, B., J. A. Brandsma, and J. Brouwer. 2005. The Rad4 homologue YDR314C is essential for strand-specific repair of RNA polymerase I-transcribed rDNA in Saccharomyces cerevisiae. Mol. Microbiol. 56:1518-1526.
    • (2005) Mol. Microbiol , vol.56 , pp. 1518-1526
    • den Dulk, B.1    Brandsma, J.A.2    Brouwer, J.3
  • 17
    • 0037107455 scopus 로고    scopus 로고
    • Hmo1, an HMG-box protein, belongs to the yeast ribosomal DNA transcription system
    • Gadal, O., S. Labarre, C. Boschiero, and P. Thuriaux. 2002. Hmo1, an HMG-box protein, belongs to the yeast ribosomal DNA transcription system. EMBO J. 21:5498-5507.
    • (2002) EMBO J , vol.21 , pp. 5498-5507
    • Gadal, O.1    Labarre, S.2    Boschiero, C.3    Thuriaux, P.4
  • 18
    • 0037050026 scopus 로고    scopus 로고
    • Functional organization of the yeast proteome by systematic analysis of protein complexes
    • Gavin, A. C., M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, et al. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141-147.
    • (2002) Nature , vol.415 , pp. 141-147
    • Gavin, A.C.1    Bosche, M.2    Krause, R.3    Grandi, P.4    Marzioch, M.5    Bauer, A.6    Schultz, J.7
  • 19
    • 33745763117 scopus 로고    scopus 로고
    • Distinct functions of ubiquitin-proteosome pathway influence nucleotide excision repair
    • Gillette, T. G., S. Yu, Z. Zhou, R. Waters, S. A. Johnson, and S. H. Reed. 2006. Distinct functions of ubiquitin-proteosome pathway influence nucleotide excision repair. EMBO J. 25:2529-2538.
    • (2006) EMBO J , vol.25 , pp. 2529-2538
    • Gillette, T.G.1    Yu, S.2    Zhou, Z.3    Waters, R.4    Johnson, S.A.5    Reed, S.H.6
  • 20
    • 33749520485 scopus 로고    scopus 로고
    • Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair
    • Gong, F., D. Fahy, and M. J. Smerdon. 2006. Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair. Nat. Struct. Mol. Biol. 13:902-907.
    • (2006) Nat. Struct. Mol. Biol , vol.13 , pp. 902-907
    • Gong, F.1    Fahy, D.2    Smerdon, M.J.3
  • 21
    • 0042671307 scopus 로고    scopus 로고
    • Epigenetic silencing of RNA polymerase I transcription
    • Grummt, I., and C. S. Pikaard. 2003. Epigenetic silencing of RNA polymerase I transcription. Nat. Rev. Mol. Cell Biol. 4:641-649.
    • (2003) Nat. Rev. Mol. Cell Biol , vol.4 , pp. 641-649
    • Grummt, I.1    Pikaard, C.S.2
  • 22
    • 0028916482 scopus 로고
    • Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14
    • Guzder, S. N., V. Bailly, P. Sung, L. Prakash, and S. Prakash. 1995. Yeast DNA repair protein RAD23 promotes complex formation between transcription factor TFIIH and DNA damage recognition factor RAD14. J. Biol. Chem. 270:8385-8388.
    • (1995) J. Biol. Chem , vol.270 , pp. 8385-8388
    • Guzder, S.N.1    Bailly, V.2    Sung, P.3    Prakash, L.4    Prakash, S.5
  • 23
    • 0029019788 scopus 로고
    • Reconstitution of yeast nucleotide excision repair with purified rad proteins, replication protein A, and transcription factor TFIIH
    • Guzder, S. N., Y. Habraken, P. Sung, L. Prakash, and S. Prakash. 1995. Reconstitution of yeast nucleotide excision repair with purified rad proteins, replication protein A, and transcription factor TFIIH. J. Biol. Chem. 270:12973-12976.
    • (1995) J. Biol. Chem , vol.270 , pp. 12973-12976
    • Guzder, S.N.1    Habraken, Y.2    Sung, P.3    Prakash, L.4    Prakash, S.5
  • 24
    • 0032553414 scopus 로고    scopus 로고
    • Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA
    • Guzder, S. N., P. Sung, L. Prakash, and S. Prakash. 1998. Affinity of yeast nucleotide excision repair factor 2, consisting of the Rad4 and Rad23 proteins, for ultraviolet damaged DNA. J. Biol. Chem. 273:31541-31546.
    • (1998) J. Biol. Chem , vol.273 , pp. 31541-31546
    • Guzder, S.N.1    Sung, P.2    Prakash, L.3    Prakash, S.4
  • 25
    • 33646242795 scopus 로고    scopus 로고
    • An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae
    • Hall, D. B., J. T. Wade, and K. Struhl. 2006. An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Mol. Cell. Biol. 26:3672-3679.
    • (2006) Mol. Cell. Biol , vol.26 , pp. 3672-3679
    • Hall, D.B.1    Wade, J.T.2    Struhl, K.3
  • 26
    • 0034461931 scopus 로고    scopus 로고
    • DNA damage in the nucleosome core is refractory to repair by human excision nuclease
    • Hara, R., J. Mo, and A. Sancar. 2000. DNA damage in the nucleosome core is refractory to repair by human excision nuclease. Mol. Cell. Biol. 20:9173-9181.
    • (2000) Mol. Cell. Biol , vol.20 , pp. 9173-9181
    • Hara, R.1    Mo, J.2    Sancar, A.3
  • 27
    • 0034716936 scopus 로고    scopus 로고
    • DNA melting and promoter clearance by eukaryotic RNA polymerase I
    • Kahl, B. F., H. Li, and M. R. Paule. 2000. DNA melting and promoter clearance by eukaryotic RNA polymerase I. J. Mol. Biol. 299:75-89.
    • (2000) J. Mol. Biol , vol.299 , pp. 75-89
    • Kahl, B.F.1    Li, H.2    Paule, M.R.3
  • 28
    • 0032509333 scopus 로고    scopus 로고
    • Preferential binding of yeast Rad4-Rad23 complex to damaged DNA
    • Jansen, L. E. T., R. A. Verhage, and J. Brouwer. 1998. Preferential binding of yeast Rad4-Rad23 complex to damaged DNA. J. Biol. Chem. 273:33111-33114.
    • (1998) J. Biol. Chem , vol.273 , pp. 33111-33114
    • Jansen, L.E.T.1    Verhage, R.A.2    Brouwer, J.3
  • 29
    • 33746666589 scopus 로고    scopus 로고
    • When transcription and repair meet: A complex system
    • Lainé, J.-P., and J.-M. Egly. 2006. When transcription and repair meet: a complex system. Trends Genet. 22:430-436.
    • (2006) Trends Genet , vol.22 , pp. 430-436
    • Lainé, J.-P.1    Egly, J.-M.2
  • 30
    • 0002019432 scopus 로고    scopus 로고
    • The dynamic structure of ribosomal RNA gene chromatin
    • M. R. Paule ed, Springer-Verlag, New York, NY
    • Lucchini, R., and J. M. Sogo. 1998. The dynamic structure of ribosomal RNA gene chromatin, p. 255-276. In M. R. Paule (ed.), Transcription of ribosomal genes by eukaryotic RNA polymerase I. Springer-Verlag, New York, NY.
    • (1998) Transcription of ribosomal genes by eukaryotic RNA polymerase I , pp. 255-276
    • Lucchini, R.1    Sogo, J.M.2
  • 31
    • 0038463782 scopus 로고    scopus 로고
    • Repair of damaged and mismatched DNA by the XPC homologues Rhp41 and Rhp42 of fission yeast
    • Marti, T. M., C. Kunz, and O. Fleck. 2003. Repair of damaged and mismatched DNA by the XPC homologues Rhp41 and Rhp42 of fission yeast. Genetics 164:457-467.
    • (2003) Genetics , vol.164 , pp. 457-467
    • Marti, T.M.1    Kunz, C.2    Fleck, O.3
  • 32
    • 14044278816 scopus 로고    scopus 로고
    • RNA polymerase I transcription factors in active yeast rRNA gene promoters enhance UV damage formation and inhibit repair
    • Meier, A., and F. Thoma. 2005. RNA polymerase I transcription factors in active yeast rRNA gene promoters enhance UV damage formation and inhibit repair. Mol. Cell. Biol. 25:1586-1595.
    • (2005) Mol. Cell. Biol , vol.25 , pp. 1586-1595
    • Meier, A.1    Thoma, F.2
  • 33
    • 0037023774 scopus 로고    scopus 로고
    • Repair of active and silenced rDNA in yeast
    • Meier, A., M. Livingstone-Zatchej, and F. Thoma. 2002. Repair of active and silenced rDNA in yeast. J. Biol. Chem. 277:11845-11852.
    • (2002) J. Biol. Chem , vol.277 , pp. 11845-11852
    • Meier, A.1    Livingstone-Zatchej, M.2    Thoma, F.3
  • 35
    • 0023663101 scopus 로고
    • Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene
    • Mellon, I., G. Spivak, and P. C. Hanawalt. 1987. Selective removal of transcription-blocking DNA damage from the transcribed strand of the mammalian DHFR gene. Cell 51:241-249.
    • (1987) Cell , vol.51 , pp. 241-249
    • Mellon, I.1    Spivak, G.2    Hanawalt, P.C.3
  • 36
    • 43249097755 scopus 로고    scopus 로고
    • Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules
    • Merz, K., M. Hondele, H. Goetze, K. Gmelch, U. Stoeckl, and J. Griesenbeck. 2008. Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes Dev. 22:1190-1204.
    • (2008) Genes Dev , vol.22 , pp. 1190-1204
    • Merz, K.1    Hondele, M.2    Goetze, H.3    Gmelch, K.4    Stoeckl, U.5    Griesenbeck, J.6
  • 37
    • 0014688424 scopus 로고
    • Visualization of nucleolar genes
    • Miller, O. L., Jr., and B. R. Beatty. 1969. Visualization of nucleolar genes. Science 164:955-957.
    • (1969) Science , vol.164 , pp. 955-957
    • Miller Jr., O.L.1    Beatty, B.R.2
  • 38
    • 34948892722 scopus 로고    scopus 로고
    • Recognition of DNA damage by the Rad4 nucleotide excision repair protein
    • Min, J.-H., and N. P. Pavletich. 2007. Recognition of DNA damage by the Rad4 nucleotide excision repair protein. Nature 449:570-576.
    • (2007) Nature , vol.449 , pp. 570-576
    • Min, J.-H.1    Pavletich, N.P.2
  • 39
    • 1942471135 scopus 로고    scopus 로고
    • At the crossroads of growth control: Making ribosomal RNA
    • Moss, T. 2004. At the crossroads of growth control: making ribosomal RNA. Curr. Opin. Genet. Dev. 14:210-217.
    • (2004) Curr. Opin. Genet. Dev , vol.14 , pp. 210-217
    • Moss, T.1
  • 40
    • 0029870677 scopus 로고    scopus 로고
    • Reaction mechanism of human DNA repair excision nuclease
    • Mu, D., D. S. Hsu, and A. Sancar. 1996. Reaction mechanism of human DNA repair excision nuclease. J. Biol. Chem. 271:8285-8294.
    • (1996) J. Biol. Chem , vol.271 , pp. 8285-8294
    • Mu, D.1    Hsu, D.S.2    Sancar, A.3
  • 41
    • 0033634725 scopus 로고    scopus 로고
    • Replication of yeast rDNA initiates downstream of transcriptionally active genes
    • Muller, M., R. Lucchini, and J. M. Sogo. 2000. Replication of yeast rDNA initiates downstream of transcriptionally active genes. Mol. Cell 5:767-777.
    • (2000) Mol. Cell , vol.5 , pp. 767-777
    • Muller, M.1    Lucchini, R.2    Sogo, J.M.3
  • 42
    • 0035787708 scopus 로고    scopus 로고
    • Ribosomal RNA genes, RNA polymerases, nucleolar structures, and synthesis of rRNA in the yeast Saccharomyces cerevisiae
    • Nomura, M. 2001. Ribosomal RNA genes, RNA polymerases, nucleolar structures, and synthesis of rRNA in the yeast Saccharomyces cerevisiae. Cold Spring Harbor Symp. Quant. Biol. 66:555-565.
    • (2001) Cold Spring Harbor Symp. Quant. Biol , vol.66 , pp. 555-565
    • Nomura, M.1
  • 43
    • 0034733496 scopus 로고    scopus 로고
    • Nucleotide excision repair in yeast
    • Prakash, S., and L. Prakash. 2000. Nucleotide excision repair in yeast. Mutation Res. 451:13-24.
    • (2000) Mutation Res , vol.451 , pp. 13-24
    • Prakash, S.1    Prakash, L.2
  • 44
    • 33846042439 scopus 로고    scopus 로고
    • Nucleotide excision repair and the ubiquitin proteasome pathway. Do all roads lead to Rome? DNA Rep
    • Reed, S. H., and T. G. Gillette. 2007. Nucleotide excision repair and the ubiquitin proteasome pathway. Do all roads lead to Rome? DNA Rep. 6:149-156.
    • (2007) , vol.6 , pp. 149-156
    • Reed, S.H.1    Gillette, T.G.2
  • 45
    • 0025316080 scopus 로고
    • Site-specific DNA repair at the nucleosome level in a yeast minichromosome
    • Smerdon, M. J., and F. Thoma. 1990. Site-specific DNA repair at the nucleosome level in a yeast minichromosome. Cell 61:675-684.
    • (1990) Cell , vol.61 , pp. 675-684
    • Smerdon, M.J.1    Thoma, F.2
  • 46
    • 0032915376 scopus 로고    scopus 로고
    • A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors
    • Smith, J. S., E. Caputo, and J. D. Boeke. 1999. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Mol. Cell. Biol. 19:3184-3197.
    • (1999) Mol. Cell. Biol , vol.19 , pp. 3184-3197
    • Smith, J.S.1    Caputo, E.2    Boeke, J.D.3
  • 47
    • 4143057611 scopus 로고    scopus 로고
    • The structure of rDNA chromatin
    • M. O. J. Olson ed, Kluwer Academic/Plenum Publishers, London, United Kingdom
    • Sogo, J. M., and F. Thoma. 2003. The structure of rDNA chromatin, p. 1-15. In M. O. J. Olson (ed.), The nucleolus. Kluwer Academic/Plenum Publishers, London, United Kingdom.
    • (2003) The nucleolus , pp. 1-15
    • Sogo, J.M.1    Thoma, F.2
  • 48
    • 34948856496 scopus 로고    scopus 로고
    • Sensing of DNA damage by XPC/Rad4: One protein for many lesions
    • Reference deleted
    • Sugasawa, K., and F. Hanaoka. 2007. Sensing of DNA damage by XPC/Rad4: one protein for many lesions. Nat. Struct. Mol. Biol. 14:887-888. 49. Reference deleted.
    • (2007) Nat. Struct. Mol. Biol , vol.14 , Issue.887-888 , pp. 49
    • Sugasawa, K.1    Hanaoka, F.2
  • 49
    • 0031588941 scopus 로고    scopus 로고
    • Excision repair at the level of the nucleotide in the Saccharomyces cerevisiae MFA2 gene: Mapping of where enhanced repair in the transcribed strand begins or ends and identification of only a partial rad16 requisite for repairing upstream control sequences
    • Teng, Y., S. Li, R. Waters, and S. H. Reed. 1997. Excision repair at the level of the nucleotide in the Saccharomyces cerevisiae MFA2 gene: mapping of where enhanced repair in the transcribed strand begins or ends and identification of only a partial rad16 requisite for repairing upstream control sequences. J. Mol. Biol. 267:324-337.
    • (1997) J. Mol. Biol , vol.267 , pp. 324-337
    • Teng, Y.1    Li, S.2    Waters, R.3    Reed, S.H.4
  • 50
    • 37849051645 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Rad16 mediates ultraviolet-dependent histone H3 acetylation required for efficient global genome nucleotide-excision repair
    • Teng, Y., H. Liu, H. W. Gill, Y. Yu, R. Waters, and S. H. Reed. 2008. Saccharomyces cerevisiae Rad16 mediates ultraviolet-dependent histone H3 acetylation required for efficient global genome nucleotide-excision repair. EMBO Rep. 9:97-102.
    • (2008) EMBO Rep , vol.9 , pp. 97-102
    • Teng, Y.1    Liu, H.2    Gill, H.W.3    Yu, Y.4    Waters, R.5    Reed, S.H.6
  • 51
    • 0036300514 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae histone acetyltransferase Gcn5 has a role in the photoreactivation and nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers in the MFA2 gene
    • Teng, Y., Y. Yu, and R. Waters. 2002. The Saccharomyces cerevisiae histone acetyltransferase Gcn5 has a role in the photoreactivation and nucleotide excision repair of UV-induced cyclobutane pyrimidine dimers in the MFA2 gene. J. Mol. Biol. 316:489-499.
    • (2002) J. Mol. Biol , vol.316 , pp. 489-499
    • Teng, Y.1    Yu, Y.2    Waters, R.3
  • 52
    • 27644597191 scopus 로고    scopus 로고
    • Psoralen photocrosslinking, a tool to study the chromatin structure of RNA polymerase I-transcribed ribosomal genes
    • Toussaint, M., G. Levasseur, M. Tremblay, M. Paquette, and A. Conconi. 2005. Psoralen photocrosslinking, a tool to study the chromatin structure of RNA polymerase I-transcribed ribosomal genes. Biochem. Cell Biol. 83:449-459.
    • (2005) Biochem. Cell Biol , vol.83 , pp. 449-459
    • Toussaint, M.1    Levasseur, G.2    Tremblay, M.3    Paquette, M.4    Conconi, A.5
  • 53
    • 65249147157 scopus 로고    scopus 로고
    • Nucleotide excision repair and photolyase repair of UV photoproducts in nucleosomes; assessing the existence of nucleosome and non-nucleosome rDNA chromatin in vivo
    • in press
    • Tremblay, M., M. Toussaint, A. D'Amours, and A. Conconi. Nucleotide excision repair and photolyase repair of UV photoproducts in nucleosomes; assessing the existence of nucleosome and non-nucleosome rDNA chromatin in vivo. Biochem. Cell Biol., in press.
    • Biochem. Cell Biol
    • Tremblay, M.1    Toussaint, M.2    D'Amours, A.3    Conconi, A.4
  • 55
    • 38949210998 scopus 로고    scopus 로고
    • Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin
    • Vasiljeva, L., M. Kim, N. Terzi, L. M. Soares, and S. Buratowski. 2008. Transcription termination and RNA degradation contribute to silencing of RNA polymerase II transcription within heterochromatin. Mol. Cell 29:313-323.
    • (2008) Mol. Cell , vol.29 , pp. 313-323
    • Vasiljeva, L.1    Kim, M.2    Terzi, N.3    Soares, L.M.4    Buratowski, S.5
  • 56
    • 0025775473 scopus 로고
    • Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes
    • Venema, J., A. van Hoffen, V. Karcagi, A. T. Natarajan, A. A. van Zeeland, and L. H. F. Mullenders. 1991. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes. Mol. Cell. Biol. 11:4128-4134.
    • (1991) Mol. Cell. Biol , vol.11 , pp. 4128-4134
    • Venema, J.1    van Hoffen, A.2    Karcagi, V.3    Natarajan, A.T.4    van Zeeland, A.A.5    Mullenders, L.H.F.6
  • 57
    • 0025190985 scopus 로고
    • The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA
    • Venema, J., A. van Hoffen, A. T. Natarajan, A. A. van Zeeland, and L. H. F. Mullenders. 1990. The residual repair capacity of xeroderma pigmentosum complementation group C fibroblasts is highly specific for transcriptionally active DNA. Nucleic Acids Res. 18:443-448.
    • (1990) Nucleic Acids Res , vol.18 , pp. 443-448
    • Venema, J.1    van Hoffen, A.2    Natarajan, A.T.3    van Zeeland, A.A.4    Mullenders, L.H.F.5
  • 58
    • 0029670373 scopus 로고    scopus 로고
    • Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes
    • Verhage, R. A., P. van de Putte, and J. Brouwer. 1996. Repair of rDNA in Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair of RNA polymerase I transcribed genes. Nucleic Acids Res. 24:1020-1025.
    • (1996) Nucleic Acids Res , vol.24 , pp. 1020-1025
    • Verhage, R.A.1    van de Putte, P.2    Brouwer, J.3
  • 59
    • 0027999206 scopus 로고
    • The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae
    • Verhage, R. A., A.-M. Zeeman, N. De Groot, F. Gleig, D. Duong Bang, P. van de Putte, and J. Brouwer. 1994. The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:6135-6142.
    • (1994) Mol. Cell. Biol , vol.14 , pp. 6135-6142
    • Verhage, R.A.1    Zeeman, A.-M.2    De Groot, N.3    Gleig, F.4    Duong Bang, D.5    van de Putte, P.6    Brouwer, J.7
  • 60
    • 0032536159 scopus 로고    scopus 로고
    • DNA protein-interactions at the Saccharomyces cerevisiae 35 S rRNA promoter and in its surrounding region
    • Vogelauer, M., F. Cioci, and G. Camilloni. 1998. DNA protein-interactions at the Saccharomyces cerevisiae 35 S rRNA promoter and in its surrounding region. J. Mol. Biol. 275:197-209.
    • (1998) J. Mol. Biol , vol.275 , pp. 197-209
    • Vogelauer, M.1    Cioci, F.2    Camilloni, G.3
  • 61
    • 0032499719 scopus 로고    scopus 로고
    • Assembly, subunit composition, and footprinting of human DNA repair excision nuclease
    • Wakasugi, M., and A. Sancar. 1998. Assembly, subunit composition, and footprinting of human DNA repair excision nuclease. Proc. Natl. Acad. Sci. USA 95:6669-6674.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 6669-6674
    • Wakasugi, M.1    Sancar, A.2
  • 62
    • 0031039087 scopus 로고    scopus 로고
    • The RAD7, RAD16, and RAD23 genes of Saccharomyces cerevisiae: Requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products
    • Wang, Z., S. Wei, S. H. Reed, X. Wu, J. Q. Svejstrup, W. J. Feaver, R. D. Kornberg, and E. C. Friedberg. 1997. The RAD7, RAD16, and RAD23 genes of Saccharomyces cerevisiae: requirement for transcription-independent nucleotide excision repair in vitro and interactions between the gene products. Mol. Cell. Biol. 17:635-643.
    • (1997) Mol. Cell. Biol , vol.17 , pp. 635-643
    • Wang, Z.1    Wei, S.2    Reed, S.H.3    Wu, X.4    Svejstrup, J.Q.5    Feaver, W.J.6    Kornberg, R.D.7    Friedberg, E.C.8
  • 63
    • 21844454991 scopus 로고    scopus 로고
    • Nucleotide excision repair in chromatin: Searching for the key to enter
    • DNA Rep. 4Suppl, 853-950
    • Waters, R., and M. J. Smerdon. 2005. Nucleotide excision repair in chromatin: searching for the key to enter. DNA Rep. 4(Suppl.):853-950.
    • (2005)
    • Waters, R.1    Smerdon, M.J.2
  • 64
    • 0027367944 scopus 로고
    • The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function
    • Watkins, J. F., P. Sung, L. Prakash, and S. Prakash. 1993. The Saccharomyces cerevisiae DNA repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like domain required for biological function. Mol. Cell. Biol. 13:7757-7765.
    • (1993) Mol. Cell. Biol , vol.13 , pp. 7757-7765
    • Watkins, J.F.1    Sung, P.2    Prakash, L.3    Prakash, S.4
  • 65
    • 12344307150 scopus 로고    scopus 로고
    • Nucleosomal structure of undamaged DNA regions suppresses the non-specific DNA binding of the XPC complex
    • Yasuda, T., K. Sugasawa, Y. Shimizu, S. Iwai, T. Shiomi, and F. Hanaoka. 2005. Nucleosomal structure of undamaged DNA regions suppresses the non-specific DNA binding of the XPC complex. DNA Rep. 4:389-395.
    • (2005) DNA Rep , vol.4 , pp. 389-395
    • Yasuda, T.1    Sugasawa, K.2    Shimizu, Y.3    Iwai, S.4    Shiomi, T.5    Hanaoka, F.6
  • 66
    • 20844453256 scopus 로고    scopus 로고
    • UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus
    • Yu, Y., Y. Teng, H. Liu, S. H. Reed, and R. Waters. 2005. UV irradiation stimulates histone acetylation and chromatin remodeling at a repressed yeast locus. Proc. Natl. Acad. Sci. USA 102:8650-8655.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 8650-8655
    • Yu, Y.1    Teng, Y.2    Liu, H.3    Reed, S.H.4    Waters, R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.