-
1
-
-
33746300545
-
-
Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L Jap. J. Appl. Phys. 2006, 45, L638.
-
(2006)
Jap. J. Appl. Phys
, vol.45
-
-
Chiba, Y.1
Islam, A.2
Watanabe, Y.3
Komiya, R.4
Koide, N.5
Han, L.6
-
3
-
-
33845281269
-
-
Spanhel, L.; Weller, H.; Henglein, A. J. Am. Chem. Soc. 1987, 109, 6632.
-
(1987)
J. Am. Chem. Soc
, vol.109
, pp. 6632
-
-
Spanhel, L.1
Weller, H.2
Henglein, A.3
-
5
-
-
0026917538
-
-
Ennaoui, A.; Fiechter, S.; Tributsch, H.; Giersig, M.; Vogel, R.; Weller, H. J. Electrochem. Soc. 1992, 139, 2514.
-
(1992)
J. Electrochem. Soc
, vol.139
, pp. 2514
-
-
Ennaoui, A.1
Fiechter, S.2
Tributsch, H.3
Giersig, M.4
Vogel, R.5
Weller, H.6
-
6
-
-
33751157695
-
-
Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. 1994, 98, 3183.
-
(1994)
J. Phys. Chem
, vol.98
, pp. 3183
-
-
Vogel, R.1
Hoyer, P.2
Weller, H.3
-
7
-
-
57249100870
-
-
We can estimate the absorption of a typical II-VI semiconductor, assuming the realistic scenario of a single layer of 5 nm particles adsorbed onto a 20 nm particle size porous oxide film. Assuming full coverage, each oxide particle is equivalent to 10 nm of absorbing semiconductor. Allowing for the varying thickness of a spherical particle coverage and the fact that there will be no coverage of the oxide at points of contact between the oxide particles, we divide this 10 nm by 2 to give a thickness of 5 nm semiconductor/20 nm oxide. This translates to 250 nm semiconductor for a 1 μm thick oxide film, already a fairly strongly-absorbing film. A 1 μm thick II-VI semiconductor absorbs strongly (probably more strongly than typical dye cells of 10//m oxide thickness, Therefore, no more than a few micrometers thick oxide film is needed for good absorption. Of course, this estimation will vary with the absorption coefficient of the semiconductor some absorb more strongly than II-VIs a
-
We can estimate the absorption of a typical II-VI semiconductor, assuming the realistic scenario of a single layer of 5 nm particles adsorbed onto a 20 nm particle size porous oxide film. Assuming full coverage, each oxide particle is equivalent to 10 nm of absorbing semiconductor. Allowing for the varying thickness of a spherical particle coverage and the fact that there will be no coverage of the oxide at points of contact between the oxide particles, we divide this 10 nm by 2 to give a thickness of 5 nm semiconductor/20 nm oxide. This translates to 250 nm semiconductor for a 1 μm thick oxide film, already a fairly strongly-absorbing film. A 1 μm thick II-VI semiconductor absorbs strongly (probably more strongly than typical dye cells of 10//m oxide thickness). Therefore, no more than a few micrometers thick oxide film is needed for good absorption. Of course, this estimation will vary with the absorption coefficient of the semiconductor (some absorb more strongly than II-VIs and others more weakly).
-
-
-
-
10
-
-
33745254765
-
-
Niitsoo, O.; Sarkar, S. K.; Pejoux, C; Rühle, S.; Cahen, D.; Hodes, G. J. Photochem. Photobiol. A. 2006, 181, 306.
-
(2006)
J. Photochem. Photobiol. A
, vol.181
, pp. 306
-
-
Niitsoo, O.1
Sarkar, S.K.2
Pejoux, C.3
Rühle, S.4
Cahen, D.5
Hodes, G.6
-
11
-
-
34547219367
-
-
Diguna, L. J.; Shen, Q.; Kobayashi, J.; Toyada, T. Appl. Phys. Lett. 2007, 97, 023116.
-
(2007)
Appl. Phys. Lett
, vol.97
, pp. 023116
-
-
Diguna, L.J.1
Shen, Q.2
Kobayashi, J.3
Toyada, T.4
-
12
-
-
38649129891
-
-
A recent paper using CdS on TiO2 nanotubes in sulfide electrolyte (no S) reported a cell efficiency of 4.15, a) Sun, W.-T, Yu, Y, Pan, H.-Y, Gao, X.-F, Chen, Q, Peng, L.-M J. Am. Chem. Soc. 2008, 130, 1124. However, this is not a true conversion efficiency since the photovoltage was measured relative to the Ag/AgCl reference electrode rather than to the counter electrode in the sulfide electrolyte. The real cell efficiency would be ca. 1, The efficiency in ref 10 was also measured with a threeelectrode setup. The reference electrode in this case was a Pt wire pseudopolysulfide (the electrolyte used) reference. The real efficiency would be decreased slightly by polarization of the counter electrode assuming a counter electrode of the same size as the photoelectrode
-
2 nanotubes in sulfide electrolyte (no S) reported a cell efficiency of 4.15%. (a) Sun, W.-T.; Yu, Y.; Pan, H.-Y.; Gao, X.-F.; Chen, Q.; Peng, L.-M J. Am. Chem. Soc. 2008, 130, 1124. However, this is not a true conversion efficiency since the photovoltage was measured relative to the Ag/AgCl reference electrode rather than to the counter electrode in the sulfide electrolyte. The real cell efficiency would be ca. 1%. The efficiency in ref 10 was also measured with a threeelectrode setup. The reference electrode in this case was a Pt wire pseudopolysulfide (the electrolyte used) reference. The real efficiency would be decreased slightly by polarization of the counter electrode (assuming a counter electrode of the same size as the photoelectrode).
-
-
-
-
13
-
-
0018996325
-
-
2).
-
2).
-
-
-
-
14
-
-
57249087945
-
-
We use the terms trap and surface state rather interchangeably. In this paper, the term surface state is generally meant to also imply a charge trap. Although the term trap is therefore more often used here, the term surface state is used where it is more commonly recognized in the general literature (e.g, when discussing electron-hole recombination in quantum dots) or if we have previously used the term surface state in the same part of the paper
-
We use the terms "trap" and "surface state" rather interchangeably. In this paper, the term "surface state" is generally meant to also imply a charge trap. Although the term trap is therefore more often used here, the term surface state is used where it is more commonly recognized in the general literature (e.g., when discussing electron-hole recombination in quantum dots) or if we have previously used the term surface state in the same part of the paper).
-
-
-
-
15
-
-
37049015559
-
-
Zhu, H.; Hagfeldt, A.; Boschloo, G J. Phys. Chem. C 2007, 111, 17455.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 17455
-
-
Zhu, H.1
Hagfeldt, A.2
Boschloo, G.3
-
16
-
-
0033887886
-
-
Ernst, K; Siebera, I.; Neumann-Spallart, M.; Lux-Steiner, M.-Ch; Könenkamp., R Thin Solid Films 2000, 361-362, 213.
-
(2000)
Thin Solid Films
, vol.361-362
, pp. 213
-
-
Ernst, K.1
Siebera, I.2
Neumann-Spallart, M.3
Lux-Steiner, M.-C.4
Könenkamp, R.5
-
17
-
-
14944343481
-
-
Haque, S. A.; Palomares, E.; Cho, B. M.; Green, A. N. M.; Hirata, N.; Klug, D. R.; Durrant, J. R. J. Am. Chem. Soc. 2005, 127, 3456.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 3456
-
-
Haque, S.A.1
Palomares, E.2
Cho, B.M.3
Green, A.N.M.4
Hirata, N.5
Klug, D.R.6
Durrant, J.R.7
-
18
-
-
0000016587
-
-
Haque, S. A.; Tacbibana, Y.; Willis, R. L.; Moser, J. E.; Grätzel, M.; Klug, D. R.; Durrant, J. R. J. Phys. Chem. B 2000, 104, 538.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 538
-
-
Haque, S.A.1
Tacbibana, Y.2
Willis, R.L.3
Moser, J.E.4
Grätzel, M.5
Klug, D.R.6
Durrant, J.R.7
-
19
-
-
13244299283
-
-
Cameron, P. J.; Peter, L. M.; Hore, S J. Phys. Chem. B 2005, 109, 930.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 930
-
-
Cameron, P.J.1
Peter, L.M.2
Hore, S.3
-
20
-
-
0009618890
-
-
Kietzmann, R.; Willig, F.; Weller, H.; Vogel, R.; Nath, D. N.; Eichberger, R.; Liska, P.; Lehnen, J. Mol. Cryst. Liq. Cryst. 1991, 194, 169.
-
(1991)
Mol. Cryst. Liq. Cryst
, vol.194
, pp. 169
-
-
Kietzmann, R.1
Willig, F.2
Weller, H.3
Vogel, R.4
Nath, D.N.5
Eichberger, R.6
Liska, P.7
Lehnen, J.8
-
21
-
-
9444238636
-
-
Evans, J. E.; Springer, K. W.; Zhang, J. Z. J. Chem. Phys. 1994, 101, 6222.
-
(1994)
J. Chem. Phys
, vol.101
, pp. 6222
-
-
Evans, J.E.1
Springer, K.W.2
Zhang, J.Z.3
-
22
-
-
0346910109
-
-
Blackburn, J. L.; Seimarten, D. C.; Nozik, A. J. J. Phys. Chem. B 2003, 107, 14154.
-
(2003)
J. Phys. Chem. B
, vol.107
, pp. 14154
-
-
Blackburn, J.L.1
Seimarten, D.C.2
Nozik, A.J.3
-
23
-
-
21844466232
-
-
Shen, Q.; Katayama, K.; Yamaguchi, M.; Sawada, T.; Toyada, T. Thin Solid Films 2005, 486, 15.
-
(2005)
Thin Solid Films
, vol.486
, pp. 15
-
-
Shen, Q.1
Katayama, K.2
Yamaguchi, M.3
Sawada, T.4
Toyada, T.5
-
24
-
-
33644535769
-
-
Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 2385
-
-
Robel, I.1
Subramanian, V.2
Kuno, M.3
Kamat, P.V.4
-
25
-
-
34247101887
-
-
Robel, I.; Kuno, M.; Kamat, P.V. J. Am. Chem. Soc. 2007, 129, 4136.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 4136
-
-
Robel, I.1
Kuno, M.2
Kamat, P.V.3
-
26
-
-
57249099792
-
-
Size quantization in semiconductor nanocrystals leads to a number of changes in the properties of the absorbing semiconductor that are important in the present context. First, the bandgap increases with decreasing crystal size (increasing size quantization, This affects the absorption spectrum of the semiconductor. It also changes the band (level) positions of the semiconductor conduction band moves upwards and valence band downwards to relative extents determined by the electron and hole effective masses, and therefore changes the energy offsets between semiconductor and oxide. Finally, increasing quantization increases the level spacings in the semiconductor
-
Size quantization in semiconductor nanocrystals leads to a number of changes in the properties of the absorbing semiconductor that are important in the present context. First, the bandgap increases with decreasing crystal size (increasing size quantization). This affects the absorption spectrum of the semiconductor. It also changes the band (level) positions of the semiconductor (conduction band moves upwards and valence band downwards to relative extents determined by the electron and hole effective masses), and therefore changes the energy offsets between semiconductor and oxide. Finally, increasing quantization increases the level spacings in the semiconductor.
-
-
-
-
27
-
-
33847662449
-
-
Schwanitz, K.; Weiler, U.; Hunger, R.; Mayer, T.; Jaegermann, W J. Phys. Chem. C 2007, 111, 849.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 849
-
-
Schwanitz, K.1
Weiler, U.2
Hunger, R.3
Mayer, T.4
Jaegermann, W.5
-
28
-
-
0001066209
-
-
Fitzmaurice, D. J.; Eschle, M.; Frei, H; Moser, J. J. Phys. Chem. 1993, 97, 3806.
-
(1993)
J. Phys. Chem
, vol.97
, pp. 3806
-
-
Fitzmaurice, D.J.1
Eschle, M.2
Frei, H.3
Moser, J.4
-
29
-
-
0024034162
-
-
Meissner, D.; Lauermann, I.; Memming, R.; Kastening, B. J. Phys. Chem. 1988, 92, 3484.
-
(1988)
J. Phys. Chem
, vol.92
, pp. 3484
-
-
Meissner, D.1
Lauermann, I.2
Memming, R.3
Kastening, B.4
-
32
-
-
0041604554
-
-
Evenor, M.; Gottesfeld, S.; Harzion, Z.; Huppert, D.; Feldberg, S. W. J. Phys. Chem. 1984, 88, 6213.
-
(1984)
J. Phys. Chem
, vol.88
, pp. 6213
-
-
Evenor, M.1
Gottesfeld, S.2
Harzion, Z.3
Huppert, D.4
Feldberg, S.W.5
-
33
-
-
0037044071
-
-
Plass, R.; Pelet, S.; Krueger, J; Grätzel, M J. Phys. Chem. B. 2002, 106, 7578.
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 7578
-
-
Plass, R.1
Pelet, S.2
Krueger, J.3
Grätzel, M.4
-
34
-
-
33751391378
-
-
Rosenwaks, Y.; Thacker, B. R.; Ahrenkiel, R. K.; Nozik, A. J. J. Phys. Chem. 1992, 96, 10096.
-
(1992)
J. Phys. Chem
, vol.96
, pp. 10096
-
-
Rosenwaks, Y.1
Thacker, B.R.2
Ahrenkiel, R.K.3
Nozik, A.J.4
-
35
-
-
0001727084
-
-
Logunov, S.; Green, T.; Marguet, S.; El-Sayed, M. A. J. Phys. Chem. A 1998, 102, 5652.
-
(1998)
J. Phys. Chem. A
, vol.102
, pp. 5652
-
-
Logunov, S.1
Green, T.2
Marguet, S.3
El-Sayed, M.A.4
-
36
-
-
0000095920
-
-
Vogel, R.; Pohl, K.; Weller, H. Chem. Phys. Lett. 1990, 174, 241.
-
(1990)
Chem. Phys. Lett
, vol.174
, pp. 241
-
-
Vogel, R.1
Pohl, K.2
Weller, H.3
-
38
-
-
0032180209
-
-
Fang, J. H.; Lu, X. M.; Zhang, X. F.; Fu, D. G.; Lu, Z. H. Supramol Sci. 1998, 5, 709.
-
(1998)
Supramol Sci
, vol.5
, pp. 709
-
-
Fang, J.H.1
Lu, X.M.2
Zhang, X.F.3
Fu, D.G.4
Lu, Z.H.5
-
39
-
-
33745636127
-
-
Shen, Q.; Katayama, K.; Sawada, T.; Yamaguchi, M.; Toyoda, T Jap. J. Appl. Phys., 2006, 45, 5569.
-
(2006)
Jap. J. Appl. Phys
, vol.45
, pp. 5569
-
-
Shen, Q.1
Katayama, K.2
Sawada, T.3
Yamaguchi, M.4
Toyoda, T.5
-
40
-
-
0039494320
-
-
Fang, J. H.; Wu, J. W.; Su, L. Y.; Zhang, X. Y.; Lu, Z. H. Chem. Lett. 1997, 149.
-
(1997)
Chem. Lett
, pp. 149
-
-
Fang, J.H.1
Wu, J.W.2
Su, L.Y.3
Zhang, X.Y.4
Lu, Z.H.5
-
41
-
-
0034670444
-
-
Shen, Y.-C.; Deng, H.; Fang, J.; Lu, Z. Colloids and Surfaces A: Physicochem. Eng. Aspects 2000, 175, 135.
-
(2000)
Colloids and Surfaces A: Physicochem. Eng. Aspects
, vol.175
, pp. 135
-
-
Shen, Y.-C.1
Deng, H.2
Fang, J.3
Lu, Z.4
-
42
-
-
0043290000
-
-
Peter, L. M.; Wijayantha, K. G. U.; Riley, D. J.; Waggett, J. P. J. Phys. Chem. B 2003, 10, 8378.
-
(2003)
J. Phys. Chem. B
, vol.10
, pp. 8378
-
-
Peter, L.M.1
Wijayantha, K.G.U.2
Riley, D.J.3
Waggett, J.P.4
-
43
-
-
33846681237
-
-
Yu, P.; Zhu, K.; Norman, A. G.; Ferrere, S.; Frank, A. J.; Nozik, A. J. J. Phys. Chem. B 2006, 110, 25451.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 25451
-
-
Yu, P.1
Zhu, K.2
Norman, A.G.3
Ferrere, S.4
Frank, A.J.5
Nozik, A.J.6
-
44
-
-
34547691216
-
Mater
-
Diguna, L J.; Shen, Q.; Sato, A.; Katayama, K.; Sawada, T.; Toyada, T Mater. Sci. Eng., C 2007, 27, 1514.
-
(2007)
Sci. Eng., C
, vol.27
, pp. 1514
-
-
Diguna, L.J.1
Shen, Q.2
Sato, A.3
Katayama, K.4
Sawada, T.5
Toyada, T.6
-
45
-
-
34247190081
-
-
Tena-Zaera, R.; Katty, A.; Bastide, S.; Lévy-Clément, C. Chem. Mater. 2007, 19, 1626.
-
(2007)
Chem. Mater
, vol.19
, pp. 1626
-
-
Tena-Zaera, R.1
Katty, A.2
Bastide, S.3
Lévy-Clément, C.4
-
46
-
-
30344451438
-
-
Hodes, G.; Grunbaum, E.; Feldman, Y.; Bastide, S.; Lévy- Clément, C. J. Electrochem. Soc. 2005, 152, G917.
-
(2005)
J. Electrochem. Soc
, vol.152
-
-
Hodes, G.1
Grunbaum, E.2
Feldman, Y.3
Bastide, S.4
Lévy- Clément, C.5
-
47
-
-
0042866150
-
-
Nusbaumer, H.; Zakeeruddin, S. M.; Moser, J.-E.; Grätzel, M. Chem - Eur. J. 2003, 9, 3756.
-
(2003)
Chem - Eur. J
, vol.9
, pp. 3756
-
-
Nusbaumer, H.1
Zakeeruddin, S.M.2
Moser, J.-E.3
Grätzel, M.4
-
48
-
-
0000439092
-
-
Huang, S. Y.; Schlichthörl, G.; Nozik, A. J.; Grätzel, M.; Frank, A. J. J. Phys. Chem. B 1997, 101, 2576.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 2576
-
-
Huang, S.Y.1
Schlichthörl, G.2
Nozik, A.J.3
Grätzel, M.4
Frank, A.J.5
-
49
-
-
12344311348
-
-
Green, A. N. M.; Chandler, R. E.; Haque, S. A.; Nelson, J.; Durrant, J. R. J. Phys. Chem. B 2005, 109, 142.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 142
-
-
Green, A.N.M.1
Chandler, R.E.2
Haque, S.A.3
Nelson, J.4
Durrant, J.R.5
-
51
-
-
0032499590
-
-
Zaban, A.; Micic, O. I.; Gregg, B. A.; Nozik, A. J. Langmuir 1998, 14, 3153.
-
(1998)
Langmuir
, vol.14
, pp. 3153
-
-
Zaban, A.1
Micic, O.I.2
Gregg, B.A.3
Nozik, A.J.4
-
52
-
-
0033748941
-
-
Hara, K.; Sayama, K.; Arakawa, H. Sol En. Mat. Sol. Cells 2000, 62, 441.
-
(2000)
Sol En. Mat. Sol. Cells
, vol.62
, pp. 441
-
-
Hara, K.1
Sayama, K.2
Arakawa, H.3
-
55
-
-
5544234289
-
-
Bessler-Podorowski, P.; Huppert, D.; Rosenwaks, Y.; Shapira, Y. J. Phys. Chem. 1991, 95, 4370.
-
(1991)
J. Phys. Chem
, vol.95
, pp. 4370
-
-
Bessler-Podorowski, P.1
Huppert, D.2
Rosenwaks, Y.3
Shapira, Y.4
-
56
-
-
25844494924
-
-
Nanu, M.; Schoonman, J; Goossens, A. Nano Lett. 2005, 5, 1716.
-
(2005)
Nano Lett
, vol.5
, pp. 1716
-
-
Nanu, M.1
Schoonman, J.2
Goossens, A.3
-
57
-
-
27744600545
-
-
Kopidakis, N.; Neale, N. R.; Zhu, K.; van de Lagemaat, J.; Frank, A. J. Appl. Phys. Lett. 2005, 87, 202106.
-
(2005)
Appl. Phys. Lett
, vol.87
, pp. 202106
-
-
Kopidakis, N.1
Neale, N.R.2
Zhu, K.3
van de Lagemaat, J.4
Frank, A.J.5
-
60
-
-
0347899829
-
-
Cahen, D.; Hodes, G.; Grätzel, M.; Guillemoles, J. F.; Riess, I J. Phys. Chem. B 2000, 104, 2053.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 2053
-
-
Cahen, D.1
Hodes, G.2
Grätzel, M.3
Guillemoles, J.F.4
Riess, I.5
-
61
-
-
14544299571
-
-
Blackburn, J. L.; Selmarten, D. C.; Ellingson, R. J.; Jones, M.; Micic, O.; Nozik, A. J. J. Phys. Chem. B 2005, 109, 2625.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 2625
-
-
Blackburn, J.L.1
Selmarten, D.C.2
Ellingson, R.J.3
Jones, M.4
Micic, O.5
Nozik, A.J.6
-
62
-
-
0036091993
-
-
Yang, S.; Huang, C.; Zhai, J.; Wang, Z.; Jiang, L. J. Mater. Chem. 2002, 12, 1459.
-
(2002)
J. Mater. Chem
, vol.12
, pp. 1459
-
-
Yang, S.1
Huang, C.2
Zhai, J.3
Wang, Z.4
Jiang, L.5
-
65
-
-
0030572324
-
-
Rehm, J. M.; McLendon, G. L.; Nagasawa, Y.; Yoshihara, K.; Moser, J.; Grätzel, M. J. Phys. Chem. 1996, 100, 9577.
-
(1996)
J. Phys. Chem
, vol.100
, pp. 9577
-
-
Rehm, J.M.1
McLendon, G.L.2
Nagasawa, Y.3
Yoshihara, K.4
Moser, J.5
Grätzel, M.6
-
66
-
-
33748469130
-
-
Burfeindt, B.; Hannappel, T.; Storck, W.; Willig, F. J. Phys. Chem. 1996, 100, 16463.
-
(1996)
J. Phys. Chem
, vol.100
, pp. 16463
-
-
Burfeindt, B.1
Hannappel, T.2
Storck, W.3
Willig, F.4
-
67
-
-
0001065383
-
-
Tachibana, Y.; Haque, S. A.; Mercer, I. P.; Durrant, J. R.; Klug, D. R. J. Phys. Chem. B 2000, 104, 1198.
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 1198
-
-
Tachibana, Y.1
Haque, S.A.2
Mercer, I.P.3
Durrant, J.R.4
Klug, D.R.5
|