메뉴 건너뛰기




Volumn 21, Issue 10, 2008, Pages 1466-1475

A model for learning to segment temporal sequences, utilizing a mixture of RNN experts together with adaptive variance

Author keywords

Maximum likelihood estimation; Mixture of experts; Recurrent neural network; Segmentation of temporal sequences; Self organization

Indexed keywords

BLOCK CODES; EDUCATION; FACE RECOGNITION; IMAGE CLASSIFICATION; MARKOV PROCESSES; MAXIMUM LIKELIHOOD; MIXTURES; NEURAL NETWORKS; RECURRENT NEURAL NETWORKS; REINFORCEMENT LEARNING; SECURITY OF DATA; TIME SERIES ANALYSIS; TURBO CODES;

EID: 56949101180     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2008.09.005     Document Type: Article
Times cited : (22)

References (28)
  • 1
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio Y., Simard P., and Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks 5 2 (1994) 157-166
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 2
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cognitive Science 14 (1990) 179-211
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 3
    • 0003363321 scopus 로고
    • Semantic theory and tacit knowledge
    • Holzman S., and Leich C. (Eds), Routledge and Kegan Paul, London
    • Evans G. Semantic theory and tacit knowledge. In: Holzman S., and Leich C. (Eds). Wittgenstein: To follow a rule (1981), Routledge and Kegan Paul, London 118-137
    • (1981) Wittgenstein: To follow a rule , pp. 118-137
    • Evans, G.1
  • 4
    • 0042326343 scopus 로고    scopus 로고
    • Recurrent neural networks with small weights implement definite memory machines
    • Hammer B., and Tin ̌o P. Recurrent neural networks with small weights implement definite memory machines. Neural Computation 15 (2003) 1897-1929
    • (2003) Neural Computation , vol.15 , pp. 1897-1929
    • Hammer, B.1    Tin ̌o, P.2
  • 6
    • 56949089418 scopus 로고    scopus 로고
    • Igari, I., & Tani, J. (2008). Incremental learning of sequence patterns with a modular network model. Neurocomputing (in press)
    • Igari, I., & Tani, J. (2008). Incremental learning of sequence patterns with a modular network model. Neurocomputing (in press)
  • 9
    • 56949091443 scopus 로고    scopus 로고
    • Jaeger, H. (2001). Short term memory in echo state networks. GMD report, 152, pp. 1-60
    • Jaeger, H. (2001). Short term memory in echo state networks. GMD report, 152, pp. 1-60
  • 10
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • Jaeger H., and Haas H. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science (2004) 78-80
    • (2004) Science , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 12
    • 0002924336 scopus 로고
    • Indeterminate motor skill learning problems
    • Jeannerod M. (Ed), MIT Press, Cambridge, MA
    • Jordan M.I. Indeterminate motor skill learning problems. In: Jeannerod M. (Ed). Attention and performances, XIII (1988), MIT Press, Cambridge, MA
    • (1988) Attention and performances, XIII
    • Jordan, M.I.1
  • 13
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • Jordan M.I., and Jacobs R.A. Hierarchical mixtures of experts and the EM algorithm. Neural Computation 6 2 (1994) 181-214
    • (1994) Neural Computation , vol.6 , Issue.2 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 15
    • 0010155436 scopus 로고    scopus 로고
    • Functional dynamics I: Articulation process
    • Kataoka N., and Kaneko K. Functional dynamics I: Articulation process. Physica D 138 (2000) 225-250
    • (2000) Physica D , vol.138 , pp. 225-250
    • Kataoka, N.1    Kaneko, K.2
  • 16
    • 0035253143 scopus 로고    scopus 로고
    • Functional dynamics II: Syntactic structure
    • Kataoka N., and Kaneko K. Functional dynamics II: Syntactic structure. Physica D 149 (2001) 174-196
    • (2001) Physica D , vol.149 , pp. 174-196
    • Kataoka, N.1    Kaneko, K.2
  • 17
    • 0038112197 scopus 로고    scopus 로고
    • Dynamical networks in function dynamics
    • Kataoka N., and Kaneko K. Dynamical networks in function dynamics. Physica D 181 (2003) 235-251
    • (2003) Physica D , vol.181 , pp. 235-251
    • Kataoka, N.1    Kaneko, K.2
  • 18
    • 56949108496 scopus 로고    scopus 로고
    • Maass, W., Natschläger, T., & Markram, H. (2002). A fresh look at real-time computation in generic recurrent neural circuits. Technical report. Institute for Theoretical Computer Science, TU Graz
    • Maass, W., Natschläger, T., & Markram, H. (2002). A fresh look at real-time computation in generic recurrent neural circuits. Technical report. Institute for Theoretical Computer Science, TU Graz
  • 19
    • 3142740800 scopus 로고    scopus 로고
    • Dynamics and computation in functional shifts
    • Namikawa J., and Hashimoto T. Dynamics and computation in functional shifts. Nonlinearity 17 (2004) 1317-1336
    • (2004) Nonlinearity , vol.17 , pp. 1317-1336
    • Namikawa, J.1    Hashimoto, T.2
  • 20
    • 56949098272 scopus 로고    scopus 로고
    • Namikawa, J., & Tani, J. Learning to imitate stochastic time series in a compositional way by chaos. Neural Networks (submitted for publication)
    • Namikawa, J., & Tani, J. Learning to imitate stochastic time series in a compositional way by chaos. Neural Networks (submitted for publication)
  • 21
    • 0001460434 scopus 로고
    • The induction of dynamical recognizers
    • Pollack J. The induction of dynamical recognizers. Machine Learning 7 (1991) 227-252
    • (1991) Machine Learning , vol.7 , pp. 227-252
    • Pollack, J.1
  • 22
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart D.E., and McClelland J.L. (Eds), MIT Press, Cambridge, MA
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning internal representations by error propagation. In: Rumelhart D.E., and McClelland J.L. (Eds). Parallel distributed processing (1986), MIT Press, Cambridge, MA 318-362
    • (1986) Parallel distributed processing , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 24
    • 0036715804 scopus 로고    scopus 로고
    • Learning nonregular languages: A comparison of simple recurrent networks and LSTM
    • Schmidhuber J., Gers F., and Eck D. Learning nonregular languages: A comparison of simple recurrent networks and LSTM. Neural Computation 14 (2002) 2039-2041
    • (2002) Neural Computation , vol.14 , pp. 2039-2041
    • Schmidhuber, J.1    Gers, F.2    Eck, D.3
  • 25
    • 39649092714 scopus 로고    scopus 로고
    • Co-developmental learning between human and humanoid robot using a dynamic neural network model
    • Tani J., Nishimoto R., Namikawa J., and Ito M. Co-developmental learning between human and humanoid robot using a dynamic neural network model. IEEE Transactions on System, Man and Cybernetics 38 1 (2008) 43-59
    • (2008) IEEE Transactions on System, Man and Cybernetics , vol.38 , Issue.1 , pp. 43-59
    • Tani, J.1    Nishimoto, R.2    Namikawa, J.3    Ito, M.4
  • 26
    • 0033213813 scopus 로고    scopus 로고
    • Learning to perceive the world as articulated: An approach for hierarchical learning in sensory-motor systems
    • Tani J., and Nolfi S. Learning to perceive the world as articulated: An approach for hierarchical learning in sensory-motor systems. Neural Networks 12 (1999) 1131-1141
    • (1999) Neural Networks , vol.12 , pp. 1131-1141
    • Tani, J.1    Nolfi, S.2
  • 27
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R.J., and Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1 (1989) 270-280
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 28
    • 0032192424 scopus 로고    scopus 로고
    • Multiple paired forward and inverse models for motor control
    • Wolpert D., and Kawato M. Multiple paired forward and inverse models for motor control. Neural Networks 11 (1998) 1317-1329
    • (1998) Neural Networks , vol.11 , pp. 1317-1329
    • Wolpert, D.1    Kawato, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.