메뉴 건너뛰기




Volumn 55, Issue 1-2, 2009, Pages 113-137

Nonlinear filters for chaotic oscillatory systems

Author keywords

Chaos; Duffing oscillator; Ensemble Kalman filter; Extended Kalman filter; Latin hypercube sampling; Non Gaussian transition probability density function; Nonlinear dynamics; Nonlinear filters; Parameter and state estimation; Particle filter

Indexed keywords

ACOUSTIC NOISE; AIR FILTERS; CELLULAR RADIO SYSTEMS; CHAOS THEORY; CHAOTIC SYSTEMS; CONTROL THEORY; DYNAMICS; EXTENDED KALMAN FILTERS; GAUSSIAN NOISE (ELECTRONIC); KALMAN FILTERS; NONLINEAR FILTERING; NUMERICAL ANALYSIS; OSCILLATORS (MECHANICAL); PARAMETER ESTIMATION; POSITION CONTROL; PROBABILITY; RANDOM PROCESSES; SIGNAL FILTERING AND PREDICTION; SPEECH RECOGNITION; SPURIOUS SIGNAL NOISE; TRELLIS CODES; WAVE FILTERS;

EID: 56749186155     PISSN: 0924090X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11071-008-9349-z     Document Type: Article
Times cited : (44)

References (72)
  • 4
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • R.E. Kalman 1960 A new approach to linear filtering and prediction problems J. Basic Eng. 82 35 45
    • (1960) J. Basic Eng. , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 5
    • 85024423711 scopus 로고
    • New results in linear filtering and prediction theory
    • R.E. Kalman R.C. Bucy 1961 New results in linear filtering and prediction theory J. Basic Eng. 83 95 108
    • (1961) J. Basic Eng. , vol.83 , pp. 95-108
    • Kalman, R.E.1    Bucy, R.C.2
  • 6
    • 0001482955 scopus 로고    scopus 로고
    • An introduction to estimation theory
    • 1B
    • S.E. Cohn 1997 An introduction to estimation theory J. Meteorol. Soc. Jpn. 75 1B 257 288
    • (1997) J. Meteorol. Soc. Jpn. , vol.75 , pp. 257-288
    • Cohn, S.E.1
  • 8
    • 0021593866 scopus 로고
    • Structural identification by extended Kalman filter
    • 12
    • M. Hoshiya E. Saito 1984 Structural identification by extended Kalman filter ASCE J. Eng. Mech. 110 12 1757 1770
    • (1984) ASCE J. Eng. Mech. , vol.110 , pp. 1757-1770
    • Hoshiya, M.1    Saito, E.2
  • 9
    • 0028457082 scopus 로고
    • Identification and uncertainty estimation of structural parameters
    • 6
    • C.G. Koh L.M. See 1991 Identification and uncertainty estimation of structural parameters ASCE J. Eng. Mech. 120 6 1219 1236
    • (1991) ASCE J. Eng. Mech. , vol.120 , pp. 1219-1236
    • Koh, C.G.1    See, L.M.2
  • 10
    • 0028554556 scopus 로고
    • Advanced data assimilation in strongly nonlinear dynamical systems
    • 8
    • R.N. Miller M. Ghill F. Gauthiez 1994 Advanced data assimilation in strongly nonlinear dynamical systems J. Atmos. Sciences 51 8 1037 1056
    • (1994) J. Atmos. Sciences , vol.51 , pp. 1037-1056
    • Miller, R.N.1    Ghill, M.2    Gauthiez, F.3
  • 11
    • 0028831692 scopus 로고
    • A system-identification approach to the detection of changes in both linear and nonlinear structural parameters
    • 1
    • C.H. Loh I.C. Tou 1995 A system-identification approach to the detection of changes in both linear and nonlinear structural parameters Earthquake Eng. Struct. Dyn. 24 1 85 97
    • (1995) Earthquake Eng. Struct. Dyn. , vol.24 , pp. 85-97
    • Loh, C.H.1    Tou, I.C.2
  • 12
    • 0035252263 scopus 로고    scopus 로고
    • Parameter identification of a time-dependent elastic-damage interface model for the simulation of debonding in composites
    • 2
    • A. Corigliano S. Mariani 2001 Parameter identification of a time-dependent elastic-damage interface model for the simulation of debonding in composites Compos. Sci. Technol. 61 2 191 203
    • (2001) Compos. Sci. Technol. , vol.61 , pp. 191-203
    • Corigliano, A.1    Mariani, S.2
  • 13
    • 4344621350 scopus 로고    scopus 로고
    • Parameter identification in explicit structural dynamics: Performance of the extended Kalman filter
    • 36-38
    • A. Corigliano S. Mariani 2004 Parameter identification in explicit structural dynamics: performance of the extended Kalman filter Comput. Methods Appl. Mech. Eng. 193 36-38 3807 3835
    • (2004) Comput. Methods Appl. Mech. Eng. , vol.193 , pp. 3807-3835
    • Corigliano, A.1    Mariani, S.2
  • 14
    • 0027047114 scopus 로고
    • Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model
    • C11
    • G. Evensen 1992 Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model J. Geophys. Res. Oceans 97 C11 17905 17924
    • (1992) J. Geophys. Res. Oceans , vol.97 , pp. 17905-17924
    • Evensen, G.1
  • 15
    • 0027839236 scopus 로고
    • Assimilation of simulated wind lidar data with a Kalman filter
    • 6
    • P. Gauthier P. Courtier P. Moll 1993 Assimilation of simulated wind lidar data with a Kalman filter Mon. Weather Rev. 121 6 1803 1820
    • (1993) Mon. Weather Rev. , vol.121 , pp. 1803-1820
    • Gauthier, P.1    Courtier, P.2    Moll, P.3
  • 18
    • 37649031765 scopus 로고    scopus 로고
    • Estimation of parameters and unobserved components for nonlinear systems from noisy time series
    • A. Sitz U. Schwarz J. Kurths H.U. Voss 2002 Estimation of parameters and unobserved components for nonlinear systems from noisy time series Phys. Rev. E 66 016210
    • (2002) Phys. Rev. e , vol.66 , pp. 016210
    • Sitz, A.1    Schwarz, U.2    Kurths, J.3    Voss, H.U.4
  • 19
    • 34248363602 scopus 로고    scopus 로고
    • Unscented Kalman filtering for nonlinear structural dynamics
    • S. Mariani A. Ghisi 2007 Unscented Kalman filtering for nonlinear structural dynamics Nonlinear Dyn. 49 131 150
    • (2007) Nonlinear Dyn. , vol.49 , pp. 131-150
    • Mariani, S.1    Ghisi, A.2
  • 21
    • 84976403108 scopus 로고
    • Variational algorithms for analysis and assimilation of meteorological observations-theoretical aspects
    • 2
    • F.X. LeDimet O. Talagrand 1986 Variational algorithms for analysis and assimilation of meteorological observations-theoretical aspects Tellus Ser. A Dyn. Meteorol. Oceanogr. 38 2 97 110
    • (1986) Tellus Ser. A Dyn. Meteorol. Oceanogr. , vol.38 , pp. 97-110
    • Ledimet, F.X.1    Talagrand, O.2
  • 22
    • 0026497736 scopus 로고
    • Chaos and quadri-dimensional data assimilation-a study based on the Lorenz model
    • 1
    • P. Gauthier 1992 Chaos and quadri-dimensional data assimilation-a study based on the Lorenz model Tellus Ser. A Dyn. Meteorol. Oceanogr. 44A 1 2 17
    • (1992) Tellus Ser. A Dyn. Meteorol. Oceanogr. , vol.44 , pp. 2-17
    • Gauthier, P.1
  • 23
    • 33846861503 scopus 로고    scopus 로고
    • On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation
    • 613
    • M. Fisher M. Leutbecher G.A. Kelly 2005 On the equivalence between Kalman smoothing and weak-constraint four-dimensional variational data assimilation Q. J. R. Meteorol. Soc. 131 613 3235 3246
    • (2005) Q. J. R. Meteorol. Soc. , vol.131 , pp. 3235-3246
    • Fisher, M.1    Leutbecher, M.2    Kelly, G.A.3
  • 25
    • 0031400136 scopus 로고    scopus 로고
    • What is an adjoint model?
    • 11
    • R.M. Errico 1997 What is an adjoint model? Bull. Am. Meteorol. Soc. 78 11 2577 2591
    • (1997) Bull. Am. Meteorol. Soc. , vol.78 , pp. 2577-2591
    • Errico, R.M.1
  • 28
    • 0036324701 scopus 로고    scopus 로고
    • An adjoint method for the assimilation of statistical characteristics into eddy-resolving ocean models
    • 4
    • A. Kohl J. Willebrand 2002 An adjoint method for the assimilation of statistical characteristics into eddy-resolving ocean models Tellus Ser. A Dyn. Meteorol. Oceanogr. 54 4 406 425
    • (2002) Tellus Ser. A Dyn. Meteorol. Oceanogr. , vol.54 , pp. 406-425
    • Kohl, A.1    Willebrand, J.2
  • 29
    • 0347709927 scopus 로고    scopus 로고
    • The potential of the ensemble Kalman filter for NWP-a comparison with 4D-Var
    • 595
    • A.C. Lorenc 2003 The potential of the ensemble Kalman filter for NWP-a comparison with 4D-Var Q. J. R. Meteorol. Soc. 129 595 3183 3203
    • (2003) Q. J. R. Meteorol. Soc. , vol.129 , pp. 3183-3203
    • Lorenc, A.C.1
  • 30
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
    • C5
    • G. Evensen 1994 Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics J. Geophys. Res. 99 C5 10143 10162
    • (1994) J. Geophys. Res. , vol.99 , pp. 10143-10162
    • Evensen, G.1
  • 31
    • 33745264896 scopus 로고    scopus 로고
    • Parameter estimation using chaotic time series
    • 5
    • J.D. Annan 2005 Parameter estimation using chaotic time series Tellus Ser. A Dyn. Meteorol. Oceanogr. 57 5 709 714
    • (2005) Tellus Ser. A Dyn. Meteorol. Oceanogr. , vol.57 , pp. 709-714
    • Annan, J.D.1
  • 32
    • 33144483499 scopus 로고    scopus 로고
    • Health monitoring for strongly non-linear systems using the ensemble Kalman filter
    • 1
    • R. Ghanem G. Ferro 2006 Health monitoring for strongly non-linear systems using the ensemble Kalman filter Struct. Control Health Monit. 13 1 245 259
    • (2006) Struct. Control Health Monit. , vol.13 , pp. 245-259
    • Ghanem, R.1    Ferro, G.2
  • 33
    • 0035335074 scopus 로고    scopus 로고
    • Stochastic methods for sequential data assimilation in strongly nonlinear systems
    • 5
    • D.T. Pham 2001 Stochastic methods for sequential data assimilation in strongly nonlinear systems Mon. Weather Rev. 129 5 1194 1207
    • (2001) Mon. Weather Rev. , vol.129 , pp. 1194-1207
    • Pham, D.T.1
  • 34
    • 0142010030 scopus 로고    scopus 로고
    • A variance-minimizing filter for large-scale applications
    • 9
    • P.J. van Leeuwen 1998 A variance-minimizing filter for large-scale applications Mon. Weather Rev. 131 9 2071 2084
    • (1998) Mon. Weather Rev. , vol.131 , pp. 2071-2084
    • Van Leeuwen, P.J.1
  • 36
    • 0001460136 scopus 로고    scopus 로고
    • On sequential Monte Carlo sampling methods for Bayesian filtering
    • 3
    • A. Doucet S.J. Godsill C. Andrieu 2000 On sequential Monte Carlo sampling methods for Bayesian filtering Stat. Comput. 10 3 197 208
    • (2000) Stat. Comput. , vol.10 , pp. 197-208
    • Doucet, A.1    Godsill, S.J.2    Andrieu, C.3
  • 37
    • 33749314914 scopus 로고    scopus 로고
    • Monte Carlo filters for identification of nonlinear structural dynamical systems
    • Part 4
    • C.S. Manohar D. Roy 2006 Monte Carlo filters for identification of nonlinear structural dynamical systems Sadhana Acad. Proc. Eng. Sci. 31 399 427 Part 4
    • (2006) Sadhana Acad. Proc. Eng. Sci. , vol.31 , pp. 399-427
    • Manohar, C.S.1    Roy, D.2
  • 38
    • 34547867101 scopus 로고    scopus 로고
    • Nonlinear structural dynamical system identification using adaptive particle filters
    • V. Namdeo C.S. Manohar 2007 Nonlinear structural dynamical system identification using adaptive particle filters J. Sound Vib. 306 524 563
    • (2007) J. Sound Vib. , vol.306 , pp. 524-563
    • Namdeo, V.1    Manohar, C.S.2
  • 39
    • 47149104538 scopus 로고    scopus 로고
    • A sequential importance sampling filter with a new proposal distribution for state and parameter estimation of nonlinear dynamical systems
    • S.J. Ghosh C.S. Manohar D. Roy 2007 A sequential importance sampling filter with a new proposal distribution for state and parameter estimation of nonlinear dynamical systems Proc. R. Soc. Lond. Ser. A 464 25 47
    • (2007) Proc. R. Soc. Lond. Ser. A , vol.464 , pp. 25-47
    • Ghosh, S.J.1    Manohar, C.S.2    Roy, D.3
  • 40
    • 0037530557 scopus 로고    scopus 로고
    • Sequential parameter estimation for stochastic systems
    • 3
    • G.A. Kivman 2003 Sequential parameter estimation for stochastic systems Nonlinear Process. Geophys. 10 3 253 259
    • (2003) Nonlinear Process. Geophys. , vol.10 , pp. 253-259
    • Kivman, G.A.1
  • 43
    • 0032742740 scopus 로고    scopus 로고
    • Comment on data assimilation using an ensemble Kalman filter technique
    • 6
    • P.J. van Leeuwen 1999 Comment on data assimilation using an ensemble Kalman filter technique Mon. Weather Rev. 127 6 1374 1377
    • (1999) Mon. Weather Rev. , vol.127 , pp. 1374-1377
    • Van Leeuwen, P.J.1
  • 45
    • 0033500692 scopus 로고    scopus 로고
    • A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts
    • 12
    • J.L. Anderson S.L. Anderson 1999 A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts Mon. Weather Rev. 127 12 2741 2758
    • (1999) Mon. Weather Rev. , vol.127 , pp. 2741-2758
    • Anderson, J.L.1    Anderson, S.L.2
  • 46
    • 1642360010 scopus 로고    scopus 로고
    • Toward a nonlinear ensemble filter for high-dimensional systems
    • D24
    • T. Bengtsson C. Snyder D. Nychka 2003 Toward a nonlinear ensemble filter for high-dimensional systems J. Geophys. Res. Atmos. 108 D24 8775
    • (2003) J. Geophys. Res. Atmos. , vol.108 , pp. 8775
    • Bengtsson, T.1    Snyder, C.2    Nychka, D.3
  • 51
    • 0039816272 scopus 로고
    • Monte Carlo techniques for prediction and filtering of non-linear stochastic processes
    • J.E. Handschin 1970 Monte Carlo techniques for prediction and filtering of non-linear stochastic processes Automatica 6 555 563
    • (1970) Automatica , vol.6 , pp. 555-563
    • Handschin, J.E.1
  • 52
    • 0016624222 scopus 로고
    • Application of Monte Carlo method to optimal control for linear-systems under measurement noise with Markov dependent statistical property
    • 6
    • H. Akashi H. Kumamoto K. Nose 1975 Application of Monte Carlo method to optimal control for linear-systems under measurement noise with Markov dependent statistical property Int. J. Control 22 6 821 836
    • (1975) Int. J. Control , vol.22 , pp. 821-836
    • Akashi, H.1    Kumamoto, H.2    Nose, K.3
  • 55
    • 0001524126 scopus 로고    scopus 로고
    • Discrete filtering using branching and interacting particle systems
    • 3
    • D. Crisan P. Del Moral T. Lyons 1999 Discrete filtering using branching and interacting particle systems Markov Process. Relat. Fields 5 3 293 318
    • (1999) Markov Process. Relat. Fields , vol.5 , pp. 293-318
    • Crisan, D.1    Del Moral, P.2    Lyons, T.3
  • 57
    • 28244486850 scopus 로고    scopus 로고
    • Bayesian state and parameter estimation of uncertain dynamical systems
    • J. Ching J.L. Beck K.A. Porter 2006 Bayesian state and parameter estimation of uncertain dynamical systems Probab. Eng. Mech. 21 81 96
    • (2006) Probab. Eng. Mech. , vol.21 , pp. 81-96
    • Ching, J.1    Beck, J.L.2    Porter, K.A.3
  • 66
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter: Theoretical formulation and practical implementation
    • 4
    • G. Evensen 2003 The ensemble Kalman filter: theoretical formulation and practical implementation Ocean Dyn. 53 4 343 367
    • (2003) Ocean Dyn. , vol.53 , pp. 343-367
    • Evensen, G.1
  • 67
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • 7
    • J.S. Whitaker T.M. Hamill 2002 Ensemble data assimilation without perturbed observations Mon. Weather Rev. 130 7 1913 1924
    • (2002) Mon. Weather Rev. , vol.130 , pp. 1913-1924
    • Whitaker, J.S.1    Hamill, T.M.2
  • 69
    • 0018468345 scopus 로고
    • A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
    • M. Mckay R. Beckman W. Conover 1979 A comparison of three methods for selecting values of input variables in the analysis of output from a computer code Technometrics 21 239 245
    • (1979) Technometrics , vol.21 , pp. 239-245
    • McKay, M.1    Beckman, R.2    Conover, W.3
  • 70
    • 0036172940 scopus 로고    scopus 로고
    • Latin hypercube sampling for stochastic finite element analysis
    • A. Olsson G. Sandberg 2002 Latin hypercube sampling for stochastic finite element analysis J. Eng. Mech. 128 121 125
    • (2002) J. Eng. Mech. , vol.128 , pp. 121-125
    • Olsson, A.1    Sandberg, G.2
  • 71
    • 84950943564 scopus 로고
    • Sequential imputations and Bayesian missing data problems
    • A. Kong J.S. Liu W.H. Wong 1994 Sequential imputations and Bayesian missing data problems J. Am. Stat. Assoc. 89 278 288
    • (1994) J. Am. Stat. Assoc. , vol.89 , pp. 278-288
    • Kong, A.1    Liu, J.S.2    Wong, W.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.