메뉴 건너뛰기




Volumn , Issue , 2008, Pages 315-320

A novel support vector machine with its features weighted by mutual information

Author keywords

[No Author keywords available]

Indexed keywords

FEATURE EXTRACTION; IMAGE RETRIEVAL; LEARNING SYSTEMS; MULTILAYER NEURAL NETWORKS; NEURAL NETWORKS; NUMERICAL ANALYSIS; VECTORS;

EID: 56349126904     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2008.4633810     Document Type: Conference Paper
Times cited : (8)

References (26)
  • 1
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. Burges, "A tutorial on support vector machines for pattern recognition", Data Mining and Knowledge Discovery, vol. 2, no. 2, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2
    • Burges, C.1
  • 4
    • 15844401385 scopus 로고    scopus 로고
    • Training support vector machines based on stacked generalization for image classification
    • C. F. Tsai, "Training support vector machines based on stacked generalization for image classification", Neurocomputing, vol. 64, pp. 497-503, 2005.
    • (2005) Neurocomputing , vol.64 , pp. 497-503
    • Tsai, C.F.1
  • 5
    • 4644347704 scopus 로고    scopus 로고
    • Design efficient support vector machine for fast classification
    • Y. Q. Zhang and D. G. Shen, "Design efficient support vector machine for fast classification", Pattern Recognition, vol. 38, no. 1, pp. 157-161, 2005.
    • (2005) Pattern Recognition , vol.38 , Issue.1 , pp. 157-161
    • Zhang, Y.Q.1    Shen, D.G.2
  • 6
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation and signal processing
    • Cambridge, Mass: MIT Press
    • V. N. Vapnik, S. Golowich, and A. Smola, "Support vector method for function approximation, regression estimation and signal processing", Advances in Neural Information Processing Systems, vol. 9, Cambridge, Mass: MIT Press, 1997.
    • (1997) Advances in Neural Information Processing Systems , vol.9
    • Vapnik, V.N.1    Golowich, S.2    Smola, A.3
  • 7
    • 33744538355 scopus 로고    scopus 로고
    • Hybrid approach of selecting hyper-parameters of support vector machine for regression
    • J. J. Tsong, "Hybrid approach of selecting hyper-parameters of support vector machine for regression", IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 36, no. 3, pp. 699-709, 2006.
    • (2006) IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics , vol.36 , Issue.3 , pp. 699-709
    • Tsong, J.J.1
  • 8
    • 34548626636 scopus 로고    scopus 로고
    • Fuzzy functions with support vector machines
    • A. Çelikyilmaz and I. B. Türkşen, "Fuzzy functions with support vector machines", Information Sciences, vol. 177, pp. 5163-5177, 2007.
    • (2007) Information Sciences , vol.177 , pp. 5163-5177
    • Çelikyilmaz, A.1    Türkşen, I.B.2
  • 10
    • 34548109392 scopus 로고    scopus 로고
    • Enhancing generalization capability of SVM classifiers with feature weight adjustment
    • X. Wang and Q. He, "Enhancing generalization capability of SVM classifiers with feature weight adjustment", Lecture Notes in Computer Science, vol. 3213, pp. 1037-1043, 2004.
    • (2004) Lecture Notes in Computer Science , vol.3213 , pp. 1037-1043
    • Wang, X.1    He, Q.2
  • 11
    • 33746727630 scopus 로고    scopus 로고
    • An enhanced support vector machine model for intrusion detection
    • J. Yao, S. Zhao, and L. Fan, "An enhanced support vector machine model for intrusion detection", Lecture Note in Computer Science, vol. 4062, pp. 538-542, 2006.
    • (2006) Lecture Note in Computer Science , vol.4062 , pp. 538-542
    • Yao, J.1    Zhao, S.2    Fan, L.3
  • 13
  • 14
    • 8444248846 scopus 로고    scopus 로고
    • Weighted-support vector machines for predicting membrane protein tyes based on pseudo-amino acid composition
    • M. Wang, J. Yang, G.-P. Liu, Z.-J. Xu, and K.-C. Chou, "Weighted-support vector machines for predicting membrane protein tyes based on pseudo-amino acid composition", Protein Engineering, Design & Selection, vol. 17, no. 6, pp. 509-516, 2004.
    • (2004) Protein Engineering, Design & Selection , vol.17 , Issue.6 , pp. 509-516
    • Wang, M.1    Yang, J.2    Liu, G.-P.3    Xu, Z.-J.4    Chou, K.-C.5
  • 15
    • 0000986833 scopus 로고    scopus 로고
    • Information theoretic learning
    • Edited by S. Haykin, New York: John Wiley & Sons
    • J. Principe, D. Xu, and J. Fisher, "Information theoretic learning", in: Unsupervised Adaptive Filtering, Edited by S. Haykin, New York: John Wiley & Sons, 2000.
    • (2000) Unsupervised Adaptive Filtering
    • Principe, J.1    Xu, D.2    Fisher, J.3
  • 16
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • K. Torkkola, "Feature extraction by non-parametric mutual information maximization", Journal of Machine Learning Research, vol. 3, pp. 1415-1438, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 17
    • 0036933407 scopus 로고    scopus 로고
    • Input feature selection by mutual information based on Parzen window
    • Dec
    • N. Kwak and C.-H. Choi, "Input feature selection by mutual information based on Parzen window", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 12, pp. 1667-1671, Dec. 2002.
    • (2002) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.24 , Issue.12 , pp. 1667-1671
    • Kwak, N.1    Choi, C.-H.2
  • 18
    • 6344233728 scopus 로고    scopus 로고
    • Feature ranking and best feature subset using mutual information
    • Sep
    • S. Cang and D. Partridge, "Feature ranking and best feature subset using mutual information", Neural Computing & Applications, vol. 13, no. 13, pp. 175-184, Sep. 2004.
    • (2004) Neural Computing & Applications , vol.13 , Issue.13 , pp. 175-184
    • Cang, S.1    Partridge, D.2
  • 21
    • 0003250435 scopus 로고
    • Single layer learning revisited: A stepwise procedure for building and training a neural network
    • Edited by F. Fogelman Soulié and J. Hérault, New York, NY: Springer
    • S. Knerr, L. Personnaz, and G. Dreyfus, "Single layer learning revisited: a stepwise procedure for building and training a neural network," in: Neurocomputing: Algorithms Architectures and Applications, Edited by F. Fogelman Soulié and J. Hérault, New York, NY: Springer, 1990.
    • (1990) Neurocomputing: Algorithms Architectures and Applications
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 23
    • 56349099686 scopus 로고    scopus 로고
    • UCI repository of machine learning datasets, Available from
    • C. Blake and C Merz, UCI repository of machine learning datasets, 1998. Available from [http://www.ics.uci.edu/~mlearn/MLRepository.html]
    • (1998)
    • Blake, C.1    Merz, C.2
  • 24
    • 2942534051 scopus 로고    scopus 로고
    • Improving fuzzy c-means clustering based on feature-weight learning
    • X. Wang, Y. Wang, and L. Wang, "Improving fuzzy c-means clustering based on feature-weight learning", Pattern Recognition Letters, vol. 25, no. 10, pp. 1123-1132, 2004.
    • (2004) Pattern Recognition Letters , vol.25 , Issue.10 , pp. 1123-1132
    • Wang, X.1    Wang, Y.2    Wang, L.3
  • 26
    • 34247622378 scopus 로고    scopus 로고
    • Iterative RELIEF for feature weighting: Algorithm, theories, and application
    • Jun
    • Y. Sun, "Iterative RELIEF for feature weighting: algorithm, theories, and application", IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp. 1035-1051, Jun. 2007.
    • (2007) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.29 , Issue.6 , pp. 1035-1051
    • Sun, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.