메뉴 건너뛰기




Volumn , Issue , 2008, Pages 2580-2587

Understanding and forecasting atmospheric quality parameters with the aid of ANNs

Author keywords

[No Author keywords available]

Indexed keywords

AIR POLLUTION; AIR QUALITY; ARTIFICIAL INTELLIGENCE; CONCENTRATION (PROCESS); FORECASTING; OZONE; PROBLEM SOLVING;

EID: 56349096887     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2008.4634159     Document Type: Conference Paper
Times cited : (10)

References (50)
  • 1
    • 0025449027 scopus 로고
    • Perceptron-based learning algorithms
    • Gallant, S. I. "Perceptron-based learning algorithms", IEEE Transactions on Neural Networks, vol. 1, no. 2, pp. 179-191 (1990).
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.2 , pp. 179-191
    • Gallant, S.I.1
  • 2
    • 0000549293 scopus 로고    scopus 로고
    • Self-Organizing Maps
    • Springer, Heidelberg. Second ed
    • Kohonen, T., "Self-Organizing Maps, Series in Information Sciences", Vol. 30. Springer, Heidelberg. Second ed. 1997.
    • (1997) Series in Information Sciences , vol.30
    • Kohonen, T.1
  • 3
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M. and White, H. (1989) "Multilayer feedforward networks are universal approximators", Neural Networks, Vol. 2, pp.359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 4
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippman, R.P. "An introduction to computing with neural nets", IEEE ASSP Magazine. (1987)
    • (1987) IEEE ASSP Magazine
    • Lippman, R.P.1
  • 5
    • 2342421564 scopus 로고    scopus 로고
    • Correlation of air pollution and meteorological data using neural networks
    • Th. Slini, K. Karatzas and N. Mousiopoulos, "Correlation of air pollution and meteorological data using neural networks", Int. J. Environment and Pollution, Vol.. 20, Nos. 1-6, pp. 218-229 (2003).
    • (2003) Int. J. Environment and Pollution , vol.20 , Issue.1-6 , pp. 218-229
    • Slini, T.1    Karatzas, K.2    Mousiopoulos, N.3
  • 6
    • 0035984379 scopus 로고    scopus 로고
    • Prediction of ambient PM10 and toxic, metals using artificial neural networks
    • Chelani, A.B., Gajghate, D.G. and Hasan, M.Z. (2002) "Prediction of ambient PM10 and toxic, metals using artificial neural networks", J. of Air and Waste Management Ass., Vol., 52, pp.805-810.
    • (2002) J. of Air and Waste Management Ass , vol.52 , pp. 805-810
    • Chelani, A.B.1    Gajghate, D.G.2    Hasan, M.Z.3
  • 7
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural networks and regression models for ozone forecasting
    • Comrie, A.C. (1997), "Comparing neural networks and regression models for ozone forecasting", J. of Air and Waste Management Ass., Vol.47, pp.653-663.
    • (1997) J. of Air and Waste Management Ass , vol.47 , pp. 653-663
    • Comrie, A.C.1
  • 8
    • 0034739912 scopus 로고    scopus 로고
    • Neural networks and periodic components used in air quality forecasting
    • Kolehmainen, M., Martikainen, H. and Ruuskanen, J. (2001), "Neural networks and periodic components used in air quality forecasting", Atmospheric Environment, Vol. 35, pp.815-825.
    • (2001) Atmospheric Environment , vol.35 , pp. 815-825
    • Kolehmainen, M.1    Martikainen, H.2    Ruuskanen, J.3
  • 9
    • 0034744978 scopus 로고    scopus 로고
    • Prediction of NO and NO2 concentrations near a street with heavy traffic in Santiago, Chile
    • Perez, P. and Trier, A. (2001), "Prediction of NO and NO2 concentrations near a street with heavy traffic in Santiago, Chile", Atmospheric Environment, Vol. 35, No. 21, pp.1783-1789.
    • (2001) Atmospheric Environment , vol.35 , Issue.21 , pp. 1783-1789
    • Perez, P.1    Trier, A.2
  • 11
    • 56349167496 scopus 로고    scopus 로고
    • L. S. Huang and R. L. Smith, Meteorologically-dependent trends in urban ozone, National Institute of Statistical Sciences (1997),Technical Report 72.
    • L. S. Huang and R. L. Smith, "Meteorologically-dependent trends in urban ozone", National Institute of Statistical Sciences (1997),Technical Report 72.
  • 12
    • 0035001169 scopus 로고    scopus 로고
    • Modeling air quality in urban areas: A cell-based statistical approach
    • Kim H.Y. and Guldmann J.M. "Modeling air quality in urban areas: A cell-based statistical approach", Geographical Analysis, 33, (2001).
    • (2001) Geographical Analysis , vol.33
    • Kim, H.Y.1    Guldmann, J.M.2
  • 13
    • 0032102851 scopus 로고    scopus 로고
    • Nonlinear dynamics of hourly ozone concentrations: Nonparametric short term prediction
    • Chen L.-J., Islam S. Biswas P. "Nonlinear dynamics of hourly ozone concentrations: Nonparametric short term prediction", Atmospheric Environment, 32, 1839-1848, (1998).
    • (1998) Atmospheric Environment , vol.32 , pp. 1839-1848
    • Chen, L.-J.1    Islam, S.2    Biswas, P.3
  • 14
    • 27844608945 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions
    • S.M. Shiva Nagendra and M. Khare, "Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions", Ecological Modelling, 190, 99-115, (2006).
    • (2006) Ecological Modelling , vol.190 , pp. 99-115
    • Shiva Nagendra, S.M.1    Khare, M.2
  • 15
    • 1342289613 scopus 로고    scopus 로고
    • Development of an operational model-based warning system for tropospheric ozone concentrations in Bordeaux, France
    • A. Zolghadri, M. Monsion, D. Henry, C. Marchionini, and O. Petrique, "Development of an operational model-based warning system for tropospheric ozone concentrations in Bordeaux, France", Environmental Modelling & Software, 19, 369-382, (2004).
    • (2004) Environmental Modelling & Software , vol.19 , pp. 369-382
    • Zolghadri, A.1    Monsion, M.2    Henry, D.3    Marchionini, C.4    Petrique, O.5
  • 16
    • 0035096378 scopus 로고    scopus 로고
    • Short-term air quality prediction using a case-based classifier
    • E. Kalapanidas and N. Avouris, "Short-term air quality prediction using a case-based classifier", Environmental Modelling & Software, 16, 263-272, (2001).
    • (2001) Environmental Modelling & Software , vol.16 , pp. 263-272
    • Kalapanidas, E.1    Avouris, N.2
  • 18
    • 0034657677 scopus 로고    scopus 로고
    • A regression-based method for mapping traffic-related air pollution: Application and testing in four contrasting urban environments
    • D. J. Briggs, C. de Hoogh, J. Gulliver, J Wills, P. Elliott, S. Kingham and K. Smallbone, "A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments", The Science of the Total Environment, 253, 151-167, (2000).
    • (2000) The Science of the Total Environment , vol.253 , pp. 151-167
    • Briggs, D.J.1    de Hoogh, C.2    Gulliver, J.3    Wills, J.4    Elliott, P.5    Kingham, S.6    Smallbone, K.7
  • 20
    • 54849407292 scopus 로고    scopus 로고
    • European Environment Agency and World Health Organisation
    • European Environment Agency and World Health Organisation (1999), Air and Health - Local authorities, health and environment, http://reports.eea.europa. eu/2599XXX/en/page008.html
    • (1999) Air and Health - Local authorities, health and environment
  • 21
    • 0032170668 scopus 로고    scopus 로고
    • The application of neural techniques to the modelling of time-series of atmospheric pollution data
    • Nunnari, G., Nucifora, A.F.M., Randieri, C. "The application of neural techniques to the modelling of time-series of atmospheric pollution data". Ecological Modelling 111, pp. 187-205 (1998)
    • (1998) Ecological Modelling , vol.111 , pp. 187-205
    • Nunnari, G.1    Nucifora, A.F.M.2    Randieri, C.3
  • 22
    • 0032586576 scopus 로고    scopus 로고
    • Ozone indices based on simple meteorological parameters: Potentials and limitations of regression and neural network model
    • Soja, G., Soja, A.M.. "Ozone indices based on simple meteorological parameters: potentials and limitations of regression and neural network model". Atmospheric Environment 33, pp. 4299-4307 (1999)
    • (1999) Atmospheric Environment , vol.33 , pp. 4299-4307
    • Soja, G.1    Soja, A.M.2
  • 24
    • 0034145096 scopus 로고    scopus 로고
    • Forecasting summertime surface-level ozone concentrations in the Lower Fraser valley of British Columbia: An ensemble neural network approach
    • Cannon, J.A., Lord, R.E. "Forecasting summertime surface-level ozone concentrations in the Lower Fraser valley of British Columbia: an ensemble neural network approach". Journal of the Air and Waste Management Association 50, pp. 322-339 (2000).
    • (2000) Journal of the Air and Waste Management Association , vol.50 , pp. 322-339
    • Cannon, J.A.1    Lord, R.E.2
  • 25
    • 0033962994 scopus 로고    scopus 로고
    • Statistical surface ozone models: An improved methodology to account for nonlinear behaviour
    • Gardner, M.W., Dorling, S.R. "Statistical surface ozone models: an improved methodology to account for nonlinear behaviour". Atmospheric Environment 34, pp. 21-34 (2000).
    • (2000) Atmospheric Environment , vol.34 , pp. 21-34
    • Gardner, M.W.1    Dorling, S.R.2
  • 26
    • 0034131752 scopus 로고    scopus 로고
    • Forecasts using neural network versus BoxeJenkins methodology for ambient air quality monitoring data
    • Kao, Jehng-Jung, Huang, Shang-Shuang. "Forecasts using neural network versus BoxeJenkins methodology for ambient air quality monitoring data". Journal of the Air and Waste Management Association 50, pp. 219-226 (2000)
    • (2000) Journal of the Air and Waste Management Association , vol.50 , pp. 219-226
    • Kao, J.-J.1    Huang, S.-S.2
  • 28
    • 34147176086 scopus 로고    scopus 로고
    • Dutot, A.L., Rynkiewicz, J., Steiner, Fredy E., Rude, J., 2007. A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environmental. Modelling and Software 22, pp. 1261-1269.
    • Dutot, A.L., Rynkiewicz, J., Steiner, Fredy E., Rude, J., 2007. A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environmental. Modelling and Software 22, pp. 1261-1269.
  • 29
    • 0038201778 scopus 로고    scopus 로고
    • Prediction of maximum daily ozone level using combined neural networks and statistical characteristics
    • Wenjian Wang, Weizhen Lu, Xiekang Wang, Leung, Andrew Y.T. "Prediction of maximum daily ozone level using combined neural networks and statistical characteristics". Environment International 29, pp. 555-562 (2003).
    • (2003) Environment International , vol.29 , pp. 555-562
    • Wang, W.1    Lu, W.2    Wang, X.3    Leung, A.Y.T.4
  • 30
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural networks and regression models for ozone forecasting
    • Comrie, A. "Comparing neural networks and regression models for ozone forecasting". Journal of the Air and Waste Management Association 47, pp. 653-663 (1997).
    • (1997) Journal of the Air and Waste Management Association , vol.47 , pp. 653-663
    • Comrie, A.1
  • 31
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron). A review of applications in the atmospheric sciences
    • Gardner, M.W., Dorling, S.R. "Artificial neural networks (the multilayer perceptron). A review of applications in the atmospheric sciences". Atmospheric Environment 32, pp. 2627-2636 (1998)
    • (1998) Atmospheric Environment , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 32
    • 0033120626 scopus 로고    scopus 로고
    • An application of artificial neural networks to the prediction of surface ozone concentrations in the United Kingdom
    • Spellman, G. "An application of artificial neural networks to the prediction of surface ozone concentrations in the United Kingdom". Applied Geography 19, pp. 123-136 (1999).
    • (1999) Applied Geography , vol.19 , pp. 123-136
    • Spellman, G.1
  • 35
    • 0034485274 scopus 로고    scopus 로고
    • Predicting peak photochemical pollutant concentrations with a combination of neural network models
    • Kioutsioukis I., Melas D., Ziomas I.C., Skouloudis A., "Predicting peak photochemical pollutant concentrations with a combination of neural network models", Neural Network world, 10, pp. 909-916. (2000)
    • (2000) Neural Network world , vol.10 , pp. 909-916
    • Kioutsioukis, I.1    Melas, D.2    Ziomas, I.C.3    Skouloudis, A.4
  • 37
    • 0042061161 scopus 로고    scopus 로고
    • Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Elsevier
    • Chaloulakou A., Saisana M., Spyrellis N. Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Elsevier: The Science of the Total Environment, Volume 313, pp. 1-13 (2003)
    • (2003) The Science of the Total Environment , vol.313 , pp. 1-13
    • Chaloulakou, A.1    Saisana, M.2    Spyrellis, N.3
  • 39
    • 56349144634 scopus 로고    scopus 로고
    • Paschalidou A. K., Iliadis L. S., Kassomenos P., Bezirtzoglou C. Neural Modelling of the Tropospheric Ozone Concentrations in an Urban Site. EANN 2007 Engineering Applications of Neural Networks (Thessaloniki, Hellas, August 29-31, 2007.)
    • Paschalidou A. K., Iliadis L. S., Kassomenos P., Bezirtzoglou C. Neural Modelling of the Tropospheric Ozone Concentrations in an Urban Site. EANN 2007 Engineering Applications of Neural Networks (Thessaloniki, Hellas, August 29-31, 2007.)
  • 40
    • 56349148678 scopus 로고
    • Copyright
    • ©
    • StatSoft, Inc. © Copyright, 1984-2003, "Neural Networks", http://www.statsoft.com/textbook/stneunet.html
    • (1984) Neural Networks
  • 41
    • 56349100533 scopus 로고    scopus 로고
    • Matlab Help. Keywords: Neural. Network Toolbox
    • Matlab Help. Keywords: Neural. Network Toolbox.
  • 43
    • 0036756215 scopus 로고    scopus 로고
    • Artificial neural network based peak load forecasting using Levenberg-Marquardt and quasi-Newton methods
    • Sep, Pages
    • Saini, L.M., Soni, M.K., "Artificial neural network based peak load forecasting using Levenberg-Marquardt and quasi-Newton methods", Generation, Transmission and Distribution, IEE Proceedings, Volume 149, Issue 5, Sep 2002, Pages: 578 - 584.
    • (2002) Generation, Transmission and Distribution, IEE Proceedings , vol.149 , Issue.5 , pp. 578-584
    • Saini, L.M.1    Soni, M.K.2
  • 44
    • 33847359184 scopus 로고    scopus 로고
    • Costa, M.A., Antônio de Pádua Braga, de Menezes, B.R., Improving generalization of MLPs with sliding mode control and the Levenberg-Marquardt algorithm, Neurocomputing, 70, Issues 7-9, March 2007, Pages 1342-1347.
    • Costa, M.A., Antônio de Pádua Braga, de Menezes, B.R., "Improving generalization of MLPs with sliding mode control and the Levenberg-Marquardt algorithm", Neurocomputing, Volume 70, Issues 7-9, March 2007, Pages 1342-1347.
  • 45
    • 56349123676 scopus 로고    scopus 로고
    • K. D. Karatzas, G. Papadourakis and I. Kyriakidis. Understanding and Forecasting Air Pollution with the Aid of Artificial Intelligence Methods in Athens, Greece. Proceedings of the Int. Workshop on Applications with Artificial Intelligence (http://www.ebusiness-lab.gr/ai/), 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI) 2007, Patras, Greece (http://ictai07.ceid.upatras.gr/). Springer Series on Studies in Computational Intelligence, in press.
    • K. D. Karatzas, G. Papadourakis and I. Kyriakidis. Understanding and Forecasting Air Pollution with the Aid of Artificial Intelligence Methods in Athens, Greece. Proceedings of the Int. Workshop on Applications with Artificial Intelligence (http://www.ebusiness-lab.gr/ai/), 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI) 2007, Patras, Greece (http://ictai07.ceid.upatras.gr/). Springer Series on Studies in Computational Intelligence, in press.
  • 46
    • 0020386641 scopus 로고
    • Some comments on the evaluation of model performance
    • Wilmott C.J. "Some comments on the evaluation of model performance", Bulletin of American Meteorological Society, 63, 1309-1313 (1982).
    • (1982) Bulletin of American Meteorological Society , vol.63 , pp. 1309-1313
    • Wilmott, C.J.1
  • 47
    • 17644370689 scopus 로고    scopus 로고
    • G. Corani, Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning, Ecological Modelling, 185, Issues 2-4, pp. (2005).
    • G. Corani, "Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning", Ecological Modelling, Volume 185, Issues 2-4, pp. (2005).
  • 48
    • 38149109707 scopus 로고    scopus 로고
    • G. Ibarra-Berasteg, A. Eliasa, A, Barona, J, Saenza, A, Ezcurraa, and J, Diaz de Argandoñ, From diagnosis to prognosis for forecasting air pollution using neural networks: Air pollution monitoring in Bilbao, Environmental Modelling & Software, Article in Press, doi:10.1016/j.envsoft.2007.09.003(2007).
    • G. Ibarra-Berasteg, A. Eliasa, A, Barona, J, Saenza, A, Ezcurraa, and J, Diaz de Argandoñ, "From diagnosis to prognosis for forecasting air pollution using neural networks: Air pollution monitoring in Bilbao", Environmental Modelling & Software, Article in Press, doi:10.1016/j.envsoft.2007.09.003(2007).
  • 49
    • 29844455331 scopus 로고    scopus 로고
    • Forecasting of ozone level in time series using MLP model with a novel hybrid training algorithm
    • Dong Wang and Wei-Zhen Lu, "Forecasting of ozone level in time series using MLP model with a novel hybrid training algorithm", Atmospheric Environment, 40, pp. 913-924 (2006).
    • (2006) Atmospheric Environment , vol.40 , pp. 913-924
    • Wang, D.1    Lu, W.-Z.2
  • 50
    • 84864521588 scopus 로고    scopus 로고
    • Use of neural networks for tropospheric ozone time series approximation and forecasting- a review
    • A. Argiriou, "Use of neural networks for tropospheric ozone time series approximation and forecasting- a review", Atmos. Chem. Phys. Discuss., 7,pp. 5739-5767, (2007), www.atmos-chem-phys-discuss.net/7/5739/ 2007/
    • (2007) Atmos. Chem. Phys. Discuss , vol.7 , pp. 5739-5767
    • Argiriou, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.