메뉴 건너뛰기




Volumn 70, Issue 7-9, 2007, Pages 1342-1347

Improving generalization of MLPs with sliding mode control and the Levenberg-Marquardt algorithm

Author keywords

Generalization; Levenberg marquardt; Multi layer perceptron; Multi objective

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; SLIDING MODE CONTROL; VECTORS;

EID: 33847359184     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.09.003     Document Type: Article
Times cited : (62)

References (11)
  • 1
    • 84898957627 scopus 로고    scopus 로고
    • For valid generalization, the size of the weights is more important than the size of the network
    • Mozer M.C., Jordan M.I., and Petsche T. (Eds), MIT Press, Cambridge, MA
    • Bartlett P.L. For valid generalization, the size of the weights is more important than the size of the network. In: Mozer M.C., Jordan M.I., and Petsche T. (Eds). Advances in Neural Information Processing Systems vol. 9 (1997), MIT Press, Cambridge, MA 134-140
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 134-140
    • Bartlett, P.L.1
  • 3
    • 0037379787 scopus 로고    scopus 로고
    • M.A. Costa, A.P. Braga, B.R. Menezes, R.A. Teixeira, G.G. Parma, Training neural networks with a multi-objective sliding mode control algorithm, Neurocomputing (51) (2003) 467-473.
  • 4
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman S., Bienenstock E., and Doursat R. Neural networks and the bias/variance dilemma. Neural Comput. 4 1 (1992) 158
    • (1992) Neural Comput. , vol.4 , Issue.1 , pp. 158
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 5
    • 0028543366 scopus 로고
    • Training feedforward networks with the marquardt algorithm
    • Hagan M.T., and Menhaj M.B. Training feedforward networks with the marquardt algorithm. IEEE Trans. Neural Networks 5 6 (1994) 989-993
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 6
    • 0000169232 scopus 로고
    • An algorithm for least squares estimation of nonlinear parameters
    • Marquardt D.W. An algorithm for least squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11 2 (1963) 431-441
    • (1963) J. Soc. Ind. Appl. Math. , vol.11 , Issue.2 , pp. 431-441
    • Marquardt, D.W.1
  • 7
    • 0033143326 scopus 로고    scopus 로고
    • Neural networks learning with sliding mode control: the sliding mode backpropagation algorithm
    • Parma G.G., de Menezes B.R., and Braga A.P. Neural networks learning with sliding mode control: the sliding mode backpropagation algorithm. Int. J. Neural Syst. 9 3 (1999) 187-193
    • (1999) Int. J. Neural Syst. , vol.9 , Issue.3 , pp. 187-193
    • Parma, G.G.1    de Menezes, B.R.2    Braga, A.P.3
  • 8
    • 0027662338 scopus 로고
    • Pruning algorithms-a survey
    • Reed R. Pruning algorithms-a survey. IEEE Trans. Neural Networks 4 5 (1993) 740-746
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.5 , pp. 740-746
    • Reed, R.1
  • 9
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. B 36 (1974) 111-133
    • (1974) J. R. Stat. Soc. B , vol.36 , pp. 111-133
    • Stone, M.1
  • 10
    • 0034331142 scopus 로고    scopus 로고
    • Improving generalization of MLPs with multi-objective optimization
    • Teixeira R.A., Braga A.P., Takahashi R.H.C., and Saldanha R.R. Improving generalization of MLPs with multi-objective optimization. Neurocomputing 35 14 (2000) 189-194
    • (2000) Neurocomputing , vol.35 , Issue.14 , pp. 189-194
    • Teixeira, R.A.1    Braga, A.P.2    Takahashi, R.H.C.3    Saldanha, R.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.