-
1
-
-
12844287073
-
Optimal resampling and classifier prototype selection in classifier ensembles using genetic algorithms
-
Altinçay, H. 2004. Optimal resampling and classifier prototype selection in classifier ensembles using genetic algorithms. Pattern Analysis and Applications 7(1):285-295.
-
(2004)
Pattern Analysis and Applications
, vol.7
, Issue.1
, pp. 285-295
-
-
Altinçay, H.1
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, L. 1996. Bagging predictors. Machine Learning 24(2): 123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0035478854
-
Random forests
-
Breiman, L. 2001. Random forests. Machine Learning 45(1):5-32.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
0001920992
-
Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks
-
Cherkauer, K. 1996. Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In Working Notes of the AAAI Workshop on Integrating Multiple Learned Models, 15-21.
-
(1996)
Working Notes of the AAAI Workshop on Integrating Multiple Learned Models
, pp. 15-21
-
-
Cherkauer, K.1
-
7
-
-
24344486891
-
Multi-objective genetic algorithms to create ensemble of classifiers
-
Evolutionary Multi-Criterion Optimization, Third International Conference, EMO 2005 Proceedings, number in
-
de Oliveira, L. E. S.; Morita, M. E.; Sabourin, R.; and Bortolozzi, F. 2005. Multi-objective genetic algorithms to create ensemble of classifiers. In Evolutionary Multi-Criterion Optimization, Third International Conference, EMO 2005 Proceedings, number 3410 in Lecture Notes in Computer Science.
-
(2005)
Lecture Notes in Computer Science
, vol.3410
-
-
de Oliveira, L.E.S.1
Morita, M.E.2
Sabourin, R.3
Bortolozzi, F.4
-
10
-
-
0031361611
-
Machine-learning research:four current directions
-
Dietterich, T. G. 1997. Machine-learning research:four current directions. AI Magazine 18(4):97-136.
-
(1997)
AI Magazine
, vol.18
, Issue.4
, pp. 97-136
-
-
Dietterich, T.G.1
-
11
-
-
80053403826
-
Ensemble methods in machine learning
-
Kittler, J, and Roli, F, eds, Multiple Classifiers Systems: first international workshop; proceedings /MCS 2000, of, Cagliari, Italy: Springer
-
Dietterich, T. G. 2000. Ensemble methods in machine learning. In Kittler, J., and Roli, F., eds., Multiple Classifiers Systems: first international workshop; proceedings /MCS 2000, volume 1857 of Lecture Notes in Computer Science, 1-15. Cagliari, Italy: Springer.
-
(2000)
Lecture Notes in Computer Science
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
12
-
-
84947553922
-
Stacking with multiresponse model trees
-
Fabio Roli, J. K, ed, Proceedings of Multiple Classifier Systems, Third International Workshop, MCS 2002, Cagliari, Italy: Springer
-
Dzeroski, S., and Zenko, B. 2002. Stacking with multiresponse model trees. In Fabio Roli, J. K., ed., Proceedings of Multiple Classifier Systems, Third International Workshop, MCS 2002, Lecture Notes in Computer Science. Cagliari, Italy: Springer.
-
(2002)
Lecture Notes in Computer Science
-
-
Dzeroski, S.1
Zenko, B.2
-
13
-
-
12144288329
-
Is combining classifiers better than selecting the best one?
-
Dzeroski, S., and Zenko, B. 2004. Is combining classifiers better than selecting the best one? Machine Learning 54(3):255-273.
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 255-273
-
-
Dzeroski, S.1
Zenko, B.2
-
15
-
-
0032117676
-
Using model trees for classification
-
Frank, E.; Wang, Y.; Inglis, S.; Holmes, G.; and Witten, I. 1998. Using model trees for classification. Machine Learning 2(32):63-76.
-
(1998)
Machine Learning
, vol.2
, Issue.32
, pp. 63-76
-
-
Frank, E.1
Wang, Y.2
Inglis, S.3
Holmes, G.4
Witten, I.5
-
16
-
-
84983110889
-
-
Freund, Y., and Schapire, R. 1995. A decision-theoretic generalization of on-line learning and an application to boosting. In Springer-Verlag., ed., Proceedings of the Second European Conference on Computational Learning Theory, 23-37.
-
Freund, Y., and Schapire, R. 1995. A decision-theoretic generalization of on-line learning and an application to boosting. In Springer-Verlag., ed., Proceedings of the Second European Conference on Computational Learning Theory, 23-37.
-
-
-
-
21
-
-
0000468432
-
Estimating continuous distribution in bayesian classifiers
-
Kaufmann, M, ed
-
John, G., and Langley, P. 1995. Estimating continuous distribution in bayesian classifiers. In Kaufmann, M., ed., Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 338-345.
-
(1995)
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
, pp. 338-345
-
-
John, G.1
Langley, P.2
-
24
-
-
55849115402
-
Data Mining: A Heuristic Approach
-
Ledezma, A.; Aler, R.; and Borrajo, D. 2001. Data Mining: a Heuristic Approach. Idea Group Publishing, chapter Heuristic Search Based Stacking of Classifiers, 54-67.
-
(2001)
Idea Group Publishing, chapter Heuristic Search Based Stacking of Classifiers
, pp. 54-67
-
-
Ledezma, A.1
Aler, R.2
Borrajo, D.3
-
30
-
-
8444229122
-
How to make stacking better and faster while also taking care of an unknown weakness
-
Claude Sammut, A. G. H, ed, Sidney, Australia: Morgan Kaufmann
-
Seewald, A. K. 2002. How to make stacking better and faster while also taking care of an unknown weakness. In Claude Sammut, A. G. H., ed., Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002). Sidney, Australia: Morgan Kaufmann.
-
(2002)
Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002)
-
-
Seewald, A.K.1
-
32
-
-
0026692226
-
Stacked generalization
-
Wolpert, D. 1992. Stacked generalization. Neural Networks 5:241-259.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.1
-
33
-
-
84880868490
-
Genetic algorithm based selective neural network ensemble
-
Zhou, Z.-H.; Wu, J.-X.; Jiang, Y.; and Chen, S.-F. 2001. Genetic algorithm based selective neural network ensemble. In Proceedings of the 17th International Joint Conference on Artificial Intelligence, volume 2.
-
(2001)
Proceedings of the 17th International Joint Conference on Artificial Intelligence
, vol.2
-
-
Zhou, Z.-H.1
Wu, J.-X.2
Jiang, Y.3
Chen, S.-F.4
|