메뉴 건너뛰기




Volumn , Issue , 2008, Pages 89-94

Genetic approach for optimizing ensembles of classifiers

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; DIESEL ENGINES; GENETIC ALGORITHMS; LEARNING SYSTEMS;

EID: 55849098057     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (26)

References (33)
  • 1
    • 12844287073 scopus 로고    scopus 로고
    • Optimal resampling and classifier prototype selection in classifier ensembles using genetic algorithms
    • Altinçay, H. 2004. Optimal resampling and classifier prototype selection in classifier ensembles using genetic algorithms. Pattern Analysis and Applications 7(1):285-295.
    • (2004) Pattern Analysis and Applications , vol.7 , Issue.1 , pp. 285-295
    • Altinçay, H.1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Machine Learning 24(2): 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. 2001. Random forests. Machine Learning 45(1):5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 0001920992 scopus 로고    scopus 로고
    • Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks
    • Cherkauer, K. 1996. Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In Working Notes of the AAAI Workshop on Integrating Multiple Learned Models, 15-21.
    • (1996) Working Notes of the AAAI Workshop on Integrating Multiple Learned Models , pp. 15-21
    • Cherkauer, K.1
  • 7
    • 24344486891 scopus 로고    scopus 로고
    • Multi-objective genetic algorithms to create ensemble of classifiers
    • Evolutionary Multi-Criterion Optimization, Third International Conference, EMO 2005 Proceedings, number in
    • de Oliveira, L. E. S.; Morita, M. E.; Sabourin, R.; and Bortolozzi, F. 2005. Multi-objective genetic algorithms to create ensemble of classifiers. In Evolutionary Multi-Criterion Optimization, Third International Conference, EMO 2005 Proceedings, number 3410 in Lecture Notes in Computer Science.
    • (2005) Lecture Notes in Computer Science , vol.3410
    • de Oliveira, L.E.S.1    Morita, M.E.2    Sabourin, R.3    Bortolozzi, F.4
  • 9
  • 10
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research:four current directions
    • Dietterich, T. G. 1997. Machine-learning research:four current directions. AI Magazine 18(4):97-136.
    • (1997) AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 11
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Kittler, J, and Roli, F, eds, Multiple Classifiers Systems: first international workshop; proceedings /MCS 2000, of, Cagliari, Italy: Springer
    • Dietterich, T. G. 2000. Ensemble methods in machine learning. In Kittler, J., and Roli, F., eds., Multiple Classifiers Systems: first international workshop; proceedings /MCS 2000, volume 1857 of Lecture Notes in Computer Science, 1-15. Cagliari, Italy: Springer.
    • (2000) Lecture Notes in Computer Science , vol.1857 , pp. 1-15
    • Dietterich, T.G.1
  • 12
    • 84947553922 scopus 로고    scopus 로고
    • Stacking with multiresponse model trees
    • Fabio Roli, J. K, ed, Proceedings of Multiple Classifier Systems, Third International Workshop, MCS 2002, Cagliari, Italy: Springer
    • Dzeroski, S., and Zenko, B. 2002. Stacking with multiresponse model trees. In Fabio Roli, J. K., ed., Proceedings of Multiple Classifier Systems, Third International Workshop, MCS 2002, Lecture Notes in Computer Science. Cagliari, Italy: Springer.
    • (2002) Lecture Notes in Computer Science
    • Dzeroski, S.1    Zenko, B.2
  • 13
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers better than selecting the best one?
    • Dzeroski, S., and Zenko, B. 2004. Is combining classifiers better than selecting the best one? Machine Learning 54(3):255-273.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 16
    • 84983110889 scopus 로고    scopus 로고
    • Freund, Y., and Schapire, R. 1995. A decision-theoretic generalization of on-line learning and an application to boosting. In Springer-Verlag., ed., Proceedings of the Second European Conference on Computational Learning Theory, 23-37.
    • Freund, Y., and Schapire, R. 1995. A decision-theoretic generalization of on-line learning and an application to boosting. In Springer-Verlag., ed., Proceedings of the Second European Conference on Computational Learning Theory, 23-37.
  • 30
    • 8444229122 scopus 로고    scopus 로고
    • How to make stacking better and faster while also taking care of an unknown weakness
    • Claude Sammut, A. G. H, ed, Sidney, Australia: Morgan Kaufmann
    • Seewald, A. K. 2002. How to make stacking better and faster while also taking care of an unknown weakness. In Claude Sammut, A. G. H., ed., Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002). Sidney, Australia: Morgan Kaufmann.
    • (2002) Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002)
    • Seewald, A.K.1
  • 32
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. 1992. Stacked generalization. Neural Networks 5:241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.