메뉴 건너뛰기




Volumn 7, Issue 3, 2004, Pages 285-295

Optimal resampling and classifier prototype selection in classifier ensembles using genetic algorithms

Author keywords

Bagging; Boosting; Classifier ensembles; Diversity; Genetic algorithms; Multiple prototype ensembles; Optimal resampling

Indexed keywords


EID: 12844287073     PISSN: 14337541     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10044-004-0225-2     Document Type: Article
Times cited : (17)

References (38)
  • 1
    • 0036080160 scopus 로고    scopus 로고
    • Bagging boosting and the random subspace method for linear classifiers
    • Skurichina M, Duin RPW (2002) Bagging boosting and the random subspace method for linear classifiers. Pattern Anal Appl 5:121-135
    • (2002) Pattern Anal Appl , vol.5 , pp. 121-135
    • Skurichina, M.1    Duin, R.P.W.2
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24:123-140
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 36:105-142
    • (1999) Mach Learn , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 7
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Tesauro G, Touretzky D, Leen T (eds) MIT Press, Cambridge, Massachusetts
    • Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and active learning. In: Tesauro G, Touretzky D, Leen T (eds) Advances in neural information processing systems, vol 7. MIT Press, Cambridge, Massachusetts, pp 231-238
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 8
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • Opitz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11:169-198
    • (1999) J Artif Intell Res , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 9
    • 84948152666 scopus 로고    scopus 로고
    • Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
    • Springer, Berlin Heidelberg New York
    • Zenobi G, Cunningham P (2001) Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. Lecture notes in computer science, Springer, Berlin Heidelberg New York, p 2167
    • (2001) Lecture Notes in Computer Science , pp. 2167
    • Zenobi, G.1    Cunningham, P.2
  • 11
    • 0036833267 scopus 로고    scopus 로고
    • Plurality voting based multiple classifier systems: Statistically independent with respect to dependent classifier sets
    • Demirekler M, Altinçay H (2002) Plurality voting based multiple classifier systems: statistically independent with respect to dependent classifier sets. Pattern Recogn 35(11):2365-2379
    • (2002) Pattern Recogn , vol.35 , Issue.11 , pp. 2365-2379
    • Demirekler, M.1    Altinçay, H.2
  • 12
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification purposes
    • Giacinto G, Roli F (2001) Design of effective neural network ensembles for image classification purposes. Image Vision Comput 19(9-10):669-707
    • (2001) Image Vision Comput , vol.19 , Issue.9-10 , pp. 669-707
    • Giacinto, G.1    Roli, F.2
  • 13
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 51:181-207
    • (2003) Mach Learn , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 15
    • 84860086818 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • More information to appear
    • Ruta D, Gabrys B (2004) Classifier selection for majority voting. More information at http://cis.paisley.ac.uk/ruta-c10/publications.htm. Inform Fusion J (to appear)
    • (2004) Inform Fusion J
    • Ruta, D.1    Gabrys, B.2
  • 16
    • 0030356238 scopus 로고    scopus 로고
    • Actively searching for an effective neural-network ensemble
    • Opitz DW, Shavlik JW (1996) Actively searching for an effective neural-network ensemble. Connect Sci 8(3/4):337-353
    • (1996) Connect Sci , vol.8 , Issue.3-4 , pp. 337-353
    • Opitz, D.W.1    Shavlik, J.W.2
  • 17
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2):337-374
    • (2000) Ann Stat , vol.28 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 19
    • 0031171679 scopus 로고    scopus 로고
    • Optimal linear combinations of neural networks
    • Hashem S (1997) Optimal linear combinations of neural networks. Neural Netw 10(4):599-614
    • (1997) Neural Netw , vol.10 , Issue.4 , pp. 599-614
    • Hashem, S.1
  • 21
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Machine Intell 20(8):832-844
    • (1998) IEEE Trans Pattern Anal Machine Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 22
    • 0002338687 scopus 로고
    • A genetic algorithm tutorial
    • Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4:65-85
    • (1994) Stat Comput , vol.4 , pp. 65-85
    • Whitley, D.1
  • 24
    • 0034314744 scopus 로고    scopus 로고
    • Designing classifier fusion systems by genetic algorithms
    • Kuncheva LI, Jain LC (2000) Designing classifier fusion systems by genetic algorithms. IEEE Trans Evol Comput 4(4):327-336
    • (2000) IEEE Trans Evol Comput , vol.4 , Issue.4 , pp. 327-336
    • Kuncheva, L.I.1    Jain, L.C.2
  • 25
    • 84956978205 scopus 로고    scopus 로고
    • Genetic algorithms for multi-classifier system configuration: A case study in character recognition
    • Kittler J, Roli F (eds) Proceedings of the 2nd international workshop on multiple classifier systems (MCS 2001), Cambridge, UK, July 2001. Springer, Berlin Heidelberg New York
    • Sirlantzis K, Fairhurst MC, Hoque S (2001) Genetic algorithms for multi-classifier system configuration: a case study in character recognition. In: Kittler J, Roli F (eds) Proceedings of the 2nd international workshop on multiple classifier systems (MCS 2001), Cambridge, UK, July 2001. Lecture notes in computer science. Springer, Berlin Heidelberg New York, pp 99-108
    • (2001) Lecture Notes in Computer Science , pp. 99-108
    • Sirlantzis, K.1    Fairhurst, M.C.2    Hoque, S.3
  • 26
    • 0029373189 scopus 로고
    • Optimal combinations of pattern classifiers
    • Lam L, Suen CY (1995) Optimal combinations of pattern classifiers. Pattern Recogn Lett 16:945-954
    • (1995) Pattern Recogn Lett , vol.16 , pp. 945-954
    • Lam, L.1    Suen, C.Y.2
  • 27
    • 84956988905 scopus 로고    scopus 로고
    • Genetic algorithms for multi-classifier system configuration: A case study in character recognition
    • Kittler J, Roli F (eds) Proceedings of the 2nd international workshop on multiple classifier systems (MCS 2001), Cambridge, UK, July 2001. Springer, Berlin Heidelberg New York
    • Ruta D, Gabrys B (2001) Genetic algorithms for multi-classifier system configuration: a case study in character recognition. In: Kittler J, Roli F (eds) Proceedings of the 2nd international workshop on multiple classifier systems (MCS 2001), Cambridge, UK, July 2001. Lecture notes in computer science, Springer, Berlin Heidelberg New York, pp 399-408
    • (2001) Lecture Notes in Computer Science , pp. 399-408
    • Ruta, D.1    Gabrys, B.2
  • 28
    • 0012987265 scopus 로고    scopus 로고
    • A genetic algorithm approach for creating neural network ensembles
    • Sharkey AJC (ed) Springer, Berlin Heidelberg New York
    • Opitz D, Shavlik J (1999) A genetic algorithm approach for creating neural network ensembles. In: Sharkey AJC (ed) Combining artificial neural nets. Springer, Berlin Heidelberg New York, pp 79-99
    • (1999) Combining Artificial Neural Nets , pp. 79-99
    • Opitz, D.1    Shavlik, J.2
  • 29
    • 0033208087 scopus 로고    scopus 로고
    • Pruning boosted classifiers with a real valued genetic algorithm
    • Thompson S (1999) Pruning boosted classifiers with a real valued genetic algorithm. Knowl-Based Syst 12:277-284
    • (1999) Knowl-Based Syst , vol.12 , pp. 277-284
    • Thompson, S.1
  • 30
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou Z, Wu J, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intell 137:239-263
    • (2002) Artif Intell , vol.137 , pp. 239-263
    • Zhou, Z.1    Wu, J.2    Tang, W.3
  • 31
    • 84984302791 scopus 로고
    • Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection
    • Leardi R (1994) Application of a genetic algorithm to feature selection under full validation conditions and to outlier detection. J Chemometr 8:65-79
    • (1994) J Chemometr , vol.8 , pp. 65-79
    • Leardi, R.1
  • 32
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • Siedlecki W, Sklansky J (1989) A note on genetic algorithms for large-scale feature selection. Pattern Recogn Lett 10:335-347
    • (1989) Pattern Recogn Lett , vol.10 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 34
    • 84867038939 scopus 로고    scopus 로고
    • Experiments with classifier combining rules
    • Kittler J, Roli F (eds) Proceedings of the 1st international workshop on multiple classifier systems (MCS 2000), Sardinia, Italy, June 2000. Springer, Berlin Heidelberg New York
    • Duin RPW, Tax DMJ (2000) Experiments with classifier combining rules. In: Kittler J, Roli F (eds) Proceedings of the 1st international workshop on multiple classifier systems (MCS 2000), Sardinia, Italy, June 2000. Lecture notes in computer science, Springer, Berlin Heidelberg New York, pp 16-29
    • (2000) Lecture Notes in Computer Science , pp. 16-29
    • Duin, R.P.W.1    Tax, D.M.J.2
  • 35
    • 84947608948 scopus 로고    scopus 로고
    • Generating classifier ensembles from multiple prototypes and its application to handwriting recognition
    • Proceedings of the 3rd international workshop on multiple classifier systems (MCS2002), Cagliari, Italy, June 2002. Springer, Berlin Heidelberg New York
    • Gunter S, Bunke H (2002) Generating classifier ensembles from multiple prototypes and its application to handwriting recognition. In: Proceedings of the 3rd international workshop on multiple classifier systems (MCS2002), Cagliari, Italy, June 2002. Lecture notes in computer science, Springer, Berlin Heidelberg New York, pp 179-188
    • (2002) Lecture Notes in Computer Science , pp. 179-188
    • Gunter, S.1    Bunke, H.2
  • 37
    • 84956994921 scopus 로고    scopus 로고
    • Methods for designing multiple classifier systems
    • Kittler J, Roli F (eds) Proceedings of the 2nd international workshop on multiple classifier systems (MCS 2001), Cambridge, UK, July 2001. Springer, Berlin Heidelberg New York
    • Roli F, Giacinto G, Vernazza G (2001) Methods for designing multiple classifier systems. In: Kittler J, Roli F (eds) Proceedings of the 2nd international workshop on multiple classifier systems (MCS 2001), Cambridge, UK, July 2001. Lecture notes in computer science, Springer, Berlin Heidelberg New York, pp 78-87
    • (2001) Lecture Notes in Computer Science , pp. 78-87
    • Roli, F.1    Giacinto, G.2    Vernazza, G.3
  • 38
    • 0033185714 scopus 로고    scopus 로고
    • Multi-objective genetic algorithms: Problem difficulties and construction of test problems
    • Kalyanmoy Deb (1999) Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol Comput 7(3):205-230
    • (1999) Evol Comput , vol.7 , Issue.3 , pp. 205-230


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.