-
1
-
-
0025725905
-
Instance-based learning algorithms
-
jan.
-
David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning algorithms. Machine Learning, 6(1):37-66, jan 1991.
-
(1991)
Machine Learning
, vol.6
, Issue.1
, pp. 37-66
-
-
Aha, D.W.1
Kibler, D.2
Albert, M.K.3
-
3
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2): 123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0035478854
-
Random forests
-
Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
0001920992
-
Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks
-
K. Cherkauer. Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In Working Notes of the AAAI Workshop on Integrating Multiple Learned Models, pages 15-21, 1996.
-
(1996)
Working Notes of the AAAI Workshop on Integrating Multiple Learned Models
, pp. 15-21
-
-
Cherkauer, K.1
-
9
-
-
0031361611
-
Dietterich. Machine-learning research:four current directions
-
Thomas G. Dietterich. Machine-learning research:four current directions. AI Magazine, 18(4):97-136, 1997.
-
(1997)
AI Magazine
, vol.18
, Issue.4
, pp. 97-136
-
-
Thomas, G.1
-
10
-
-
80053403826
-
Ensemble methods in machine learning
-
Josef Kittler and Fabio Roli, editors, Multiple Classifiers Systems: first international workshop; proceedings /MCS 2000, Cagliari, Italy, June Springer.
-
Thomas G. Dietterich. Ensemble methods in machine learning. In Josef Kittler and Fabio Roli, editors, Multiple Classifiers Systems: first international workshop; proceedings /MCS 2000, volume 1857 of Lecture Notes in Computer Science, pages 1-15, Cagliari, Italy, June 2000. Springer.
-
(2000)
Lecture Notes in Computer Science
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
11
-
-
0000406788
-
Solving multi-class learning problems via error-correcting output codes
-
Thomas G. Dietterich and Ghulum Bakiri. Solving multi-class learning problems via error-correcting output codes. Journal of Artificial Intelligence Research, 2:263-286, 1995.
-
(1995)
Journal of Artificial Intelligence Research
, vol.2
, pp. 263-286
-
-
Dietterich, T.G.1
Bakiri, G.2
-
12
-
-
84947553922
-
Stacking with multi-response model trees
-
Josef Kittler Fabio Roli, editor, Lecture Notes in Computer Science, Cagliari, Italy, Springer.
-
Saso Dzeroski and Bernard Zenko. Stacking with multi-response model trees. In Josef Kittler Fabio Roli, editor, Proceedings of Multiple Classifier Systems, Third International Workshop, MCS 2002, Lecture Notes in Computer Science, Cagliari, Italy, 2002. Springer.
-
(2002)
Proceedings of Multiple Classifier Systems, Third International Workshop, MCS 2002
-
-
Dzeroski, S.1
Zenko, B.2
-
13
-
-
12144288329
-
Is combining classifiers better than selecting the best one?
-
Saso Dzeroski and Bernard Zenko. Is combining classifiers better than selecting the best one? Machine Learning, (54):255-273, 2004.
-
(2004)
Machine Learning
, Issue.54
, pp. 255-273
-
-
Dzeroski, S.1
Zenko, B.2
-
22
-
-
33645964460
-
-
chapter Heuristic Search Based Stacking of Classifiers. Idea Group Publishing
-
Agapito Ledezma, Ricardo Aler, and Daniel Borrajo. Data Mining: a Heuristic Approach, chapter Heuristic Search Based Stacking of Classifiers. Idea Group Publishing, 2001.
-
(2001)
Data Mining: A Heuristic Approach
-
-
Ledezma, A.1
Aler, R.2
Borrajo, D.3
-
24
-
-
0032661927
-
Using correspondence analysis to combine classifiers
-
Christopher J. Merz. Using correspondence analysis to combine classifiers. Machine Learning, 36(1-2):33-58, 1999.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 33-58
-
-
Merz, C.J.1
-
26
-
-
8444229122
-
How to make stacking better and faster while also taking care of an unknown weakness
-
Achim G. Hoffmann Claude Sammut, editor, Sidney, Australia, July Morgan Kaufmann.
-
Alexander K. Seewald. How to make stacking better and faster while also taking care of an unknown weakness. In Achim G. Hoffmann Claude Sammut, editor, Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002), Sidney, Australia, July 2002. Morgan Kaufmann.
-
(2002)
Proceedings of the Nineteenth International Conference on Machine Learning (ICML 2002)
-
-
Seewald, A.K.1
-
27
-
-
84958554285
-
An evaluation of grading classifiers
-
Frank Hoffmann, David J. Hand, Niall M. Adams, Douglas H. Fisher, and Gabriela Guimarães, editors, Lecture Notes in Computer Science
-
Alexander K. Seewald and Johannes Fürnkranz. An evaluation of grading classifiers. In Frank Hoffmann, David J. Hand, Niall M. Adams, Douglas H. Fisher, and Gabriela Guimarães, editors, Advances in Intelligent Data Analysis, 4th International Conference, IDA 2001, Proceedings, Lecture Notes in Computer Science, pages 115-124, 2001.
-
(2001)
Advances in Intelligent Data Analysis, 4th International Conference, IDA 2001, Proceedings
, pp. 115-124
-
-
Seewald, A.K.1
Fürnkranz, J.2
-
31
-
-
0026692226
-
Stacked generalization
-
D. Wolpert. Stacked generalization. Neural Networks, 5:241-259, 1992.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.1
-
32
-
-
0036567392
-
Ensembling neural networks: Many could be better than al
-
J. Wu Z.-H. Zhou and W. Tang. Ensembling neural networks: Many could be better than al. Artificial Intelligence, 137(1-2), 2002.
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
-
-
Wu, J.1
Zhou, Z.-H.2
Tang, W.3
|