메뉴 건너뛰기




Volumn 46, Issue 6, 2007, Pages 2031-2051

Primal-dual symmetric intrinsic methods for finding antiderivatives of cyclically monotone operators

Author keywords

Antiderivative; Convex function; Cyclically monotone operator; Fenchel conjugate; Fitzpatrick function; Maximal monotone operator; n cyclically monotone operator; Proximal average; Rockafellar function; Rockafellar's antiderivative; Subdifferential operator

Indexed keywords

CONSTRUCTION; GRAPH THEORY;

EID: 55349122952     PISSN: 03630129     EISSN: None     Source Type: Journal    
DOI: 10.1137/060675794     Document Type: Article
Times cited : (25)

References (24)
  • 1
    • 0039531752 scopus 로고
    • A Monotone Convergence Theorem for Sequences of Nonlinear Mappings
    • American Mathematical Society, Chicago
    • E. ASPLUND, A Monotone Convergence Theorem for Sequences of Nonlinear Mappings, Non-linear Functional Analysis, in Proceedings of Symposia in Pure Mathematics XVIII Part 1, American Mathematical Society, Chicago, 1970, pp. 1-9.
    • (1970) Non-linear Functional Analysis, in Proceedings of Symposia in Pure Mathematics , vol.18 , Issue.PART 1 , pp. 1-9
    • ASPLUND, E.1
  • 2
    • 33845366887 scopus 로고    scopus 로고
    • Fitzpatrick functions, cyclic monotonicity, and Rockafellar's antiderivative
    • S. BARTZ, H. H. BAUSCHKE, J. M. BORWEIN, S. REICH, AND X. WANG, Fitzpatrick functions, cyclic monotonicity, and Rockafellar's antiderivative, Nonlinear Anal., 66 (2007), pp. 1198-1223.
    • (2007) Nonlinear Anal , vol.66 , pp. 1198-1223
    • BARTZ, S.1    BAUSCHKE, H.H.2    BORWEIN, J.M.3    REICH, S.4    WANG, X.5
  • 3
    • 49449086907 scopus 로고    scopus 로고
    • Fitzpatrick functions and continuous linear monotone operators
    • H. H. BAUSCHKE, J. M. BORWEIN, AND X. WANG, Fitzpatrick functions and continuous linear monotone operators, SIAM J. Optim., 18 (2007), pp. 789-809.
    • (2007) SIAM J. Optim , vol.18 , pp. 789-809
    • BAUSCHKE, H.H.1    BORWEIN, J.M.2    WANG, X.3
  • 4
    • 55349086456 scopus 로고    scopus 로고
    • The proximal average: Basic theory, SIOPT
    • submitted
    • H. H. BAUSCHKE, R. GOEBEL, Y. LUCET, AND X. WANG, The proximal average: Basic theory, SIOPT, submitted.
    • BAUSCHKE, H.H.1    GOEBEL, R.2    LUCET, Y.3    WANG, X.4
  • 5
    • 40749098664 scopus 로고    scopus 로고
    • How to transform one convex function continuously into another
    • to appear
    • H. H. BAUSCHKE, Y. LUCET, AND M. TRIENIS, How to transform one convex function continuously into another, SIAM Rev., to appear.
    • SIAM Rev
    • BAUSCHKE, H.H.1    LUCET, Y.2    TRIENIS, M.3
  • 6
    • 0347269125 scopus 로고    scopus 로고
    • Projection and proximal point methods: Convergence results and counterexamples
    • H. H. BAUSCHKE, E. MATOUŠKOVÁ, AND S. REICH, Projection and proximal point methods: Convergence results and counterexamples, Nonlinear Anal., 56 (2004), pp. 715-738.
    • (2004) Nonlinear Anal , vol.56 , pp. 715-738
    • BAUSCHKE, H.H.1    MATOUŠKOVÁ, E.2    REICH, S.3
  • 7
    • 34547565727 scopus 로고    scopus 로고
    • A convex-analytical approach to extension results for n-cyclically monotone operators
    • H. H. BAUSCHKE AND X. WANG, A convex-analytical approach to extension results for n-cyclically monotone operators, Set-Valued Anal., 15 (2007), pp. 297-306.
    • (2007) Set-Valued Anal , vol.15 , pp. 297-306
    • BAUSCHKE, H.H.1    WANG, X.2
  • 8
    • 55349130241 scopus 로고    scopus 로고
    • H. H. BAUSCHKE AND X. WANG, The Kernel Average for Two Convex Functions and Its Application to the Extension and Representation of Monotone Operators, preprint available at http://www.optimization-online. org/DB_HTML/2007/05/1658.html
    • H. H. BAUSCHKE AND X. WANG, The Kernel Average for Two Convex Functions and Its Application to the Extension and Representation of Monotone Operators, preprint available at http://www.optimization-online. org/DB_HTML/2007/05/1658.html
  • 9
    • 32044462935 scopus 로고    scopus 로고
    • Subdifferential representation of convex functions: Refinements and applications
    • J. BENOIST AND A. DANIILIDIS, Subdifferential representation of convex functions: Refinements and applications, J. Convex Anal., 12 (2005), pp. 255-265.
    • (2005) J. Convex Anal , vol.12 , pp. 255-265
    • BENOIST, J.1    DANIILIDIS, A.2
  • 10
    • 33749528052 scopus 로고    scopus 로고
    • Maximal monotonicity via convex analysis
    • J. M. BORWEIN, Maximal monotonicity via convex analysis, J. Convex Anal., 13 (2006), pp. 561-586.
    • (2006) J. Convex Anal , vol.13 , pp. 561-586
    • BORWEIN, J.M.1
  • 13
    • 0035416410 scopus 로고    scopus 로고
    • Non-convergence result for conformal approximation of variational problems subject to a convexity constraint
    • P. CHONÉ AND H. V. J. LE MEUR, Non-convergence result for conformal approximation of variational problems subject to a convexity constraint, Numer. Funct. Anal. Optim., 22 (2001), pp. 529-547.
    • (2001) Numer. Funct. Anal. Optim , vol.22 , pp. 529-547
    • CHONÉ, P.1    LE MEUR, H.V.J.2
  • 15
    • 67449092643 scopus 로고    scopus 로고
    • The piecewise linear-quadratic model for computational convex analysis
    • to appear
    • Y. LUCET, H. H. BAUSCHKE, AND M. TRIENIS, The piecewise linear-quadratic model for computational convex analysis, Comput. Optim. Appl., to appear.
    • Comput. Optim. Appl
    • LUCET, Y.1    BAUSCHKE, H.H.2    TRIENIS, M.3
  • 16
    • 0000531094 scopus 로고
    • On the maximal domain of a monotone function
    • G. J. MINTY, On the maximal domain of a monotone function, Michigan Math. J., 8 (1961), pp. 135-137.
    • (1961) Michigan Math. J , vol.8 , pp. 135-137
    • MINTY, G.J.1
  • 17
    • 0000276924 scopus 로고
    • Proximité et dualité dans un espace hilbertien
    • J.-J. MOREAU, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93 (1965), pp. 273-299.
    • (1965) Bull. Soc. Math. France , vol.93 , pp. 273-299
    • MOREAU, J.-J.1
  • 18
    • 0003323056 scopus 로고
    • Convex Functions, Monotone Operators, and Differentiability
    • second ed, Springer-Verlag, Berlin
    • R. R. PHELPS, Convex Functions, Monotone Operators, and Differentiability, second ed., Lecture Notes in Math. 1364, Springer-Verlag, Berlin, 1993.
    • (1993) Lecture Notes in Math , vol.1364
    • PHELPS, R.R.1
  • 19
    • 84972582929 scopus 로고
    • On the maximal monotonicity of subdifferential mappings
    • R. T. ROCKAFELLAR, On the maximal monotonicity of subdifferential mappings, Pacific J. Math., 33 (1970), pp. 209-216.
    • (1970) Pacific J. Math , vol.33 , pp. 209-216
    • ROCKAFELLAR, R.T.1
  • 20
    • 0004267646 scopus 로고
    • Princeton University Press, Princeton, NJ
    • R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
    • (1970) Convex Analysis
    • ROCKAFELLAR, R.T.1
  • 22
    • 0012712796 scopus 로고
    • Minimax and Monotonicity
    • Springer-Verlag, Berlin
    • S. SIMONS, Minimax and Monotonicity, Lecture Notes in Math. 1693, Springer-Verlag, Berlin, 1998.
    • (1693) Lecture Notes in Math
    • SIMONS, S.1
  • 23
    • 50349103024 scopus 로고    scopus 로고
    • Extension theorems for k-monotone operators
    • Univ. Bacǎu
    • M. D. VOISEI, Extension theorems for k-monotone operators, Stud. Cercet. Stiinţ. Ser. Mat. Univ. Bacǎu, 9 (1999), pp. 235-242.
    • (1999) Stud. Cercet. Stiinţ. Ser. Mat , vol.9 , pp. 235-242
    • VOISEI, M.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.