-
1
-
-
0039531752
-
A monotone convergence theorem for sequences of nonlinear mappings
-
Nonlinear Functional Analysis, American Mathematical Society, Chicago
-
Asplund E. A monotone convergence theorem for sequences of nonlinear mappings. Nonlinear Functional Analysis. Proceedings of Symposia in Pure Mathematics vol. XVIII, Part 1 (1970), American Mathematical Society, Chicago 1-9
-
(1970)
Proceedings of Symposia in Pure Mathematics
, vol.XVIII PART 1
, pp. 1-9
-
-
Asplund, E.1
-
2
-
-
33845368999
-
-
A. Auslender, Méthodes Numériques pour la Résolution des Problèmes d'Optimisation avec Constraintes, Thèse, Faculté des Sciences, Grenoble, 1969
-
-
-
-
3
-
-
33845369423
-
-
S. Bartz, On the Subdifferential, M.Sc. Thesis, The Technion-Israel Institute of Technology, Haifa, October 2005
-
-
-
-
4
-
-
0012677529
-
Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators
-
Bauschke H.H., and Borwein J.M. Maximal monotonicity of dense type, local maximal monotonicity, and monotonicity of the conjugate are all the same for continuous linear operators. Pacific Journal of Mathematics 189 (1999) 1-20
-
(1999)
Pacific Journal of Mathematics
, vol.189
, pp. 1-20
-
-
Bauschke, H.H.1
Borwein, J.M.2
-
5
-
-
20144368670
-
A new proximal point iteration that converges weakly but not in norm
-
Bauschke H.H., Burke J.V., Deutsch F.R., Hundal H.S., and Vanderwerff J.D. A new proximal point iteration that converges weakly but not in norm. Proceedings of the American Mathematical Society 133 (2005) 1829-1835
-
(2005)
Proceedings of the American Mathematical Society
, vol.133
, pp. 1829-1835
-
-
Bauschke, H.H.1
Burke, J.V.2
Deutsch, F.R.3
Hundal, H.S.4
Vanderwerff, J.D.5
-
6
-
-
0347269125
-
Projection and proximal point methods: convergence results and counterexamples
-
Bauschke H.H., Matoušková E., and Reich S. Projection and proximal point methods: convergence results and counterexamples. Nonlinear Analysis 56 (2004) 715-738
-
(2004)
Nonlinear Analysis
, vol.56
, pp. 715-738
-
-
Bauschke, H.H.1
Matoušková, E.2
Reich, S.3
-
7
-
-
33845365791
-
-
H.H. Bauschke, D.A. McLaren, H.S. Sendov, Fitzpatrick functions: inequalities, examples, and remarks on a problem by S. Fitzpatrick, Journal of Convex Analysis (in press)
-
-
-
-
8
-
-
84972540566
-
A note on ε-subgradients and maximal monotonicity
-
Borwein J.M. A note on ε-subgradients and maximal monotonicity. Pacific Journal of Mathematics 103 (1982) 307-314
-
(1982)
Pacific Journal of Mathematics
, vol.103
, pp. 307-314
-
-
Borwein, J.M.1
-
9
-
-
33845358375
-
-
J.M. Borwein, Maximal monotonicity via convex analysis, Journal of Convex Analysis (in press)
-
-
-
-
17
-
-
0036034569
-
Maximal monotone operators, convex functions and a special family of enlargements
-
Burachik R.S., and Svaiter B.F. Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Analysis 10 (2002) 297-316
-
(2002)
Set-Valued Analysis
, vol.10
, pp. 297-316
-
-
Burachik, R.S.1
Svaiter, B.F.2
-
19
-
-
7544230189
-
A theorem and a counterexample in the theory of semigroups of nonlinear transformations
-
Crandall M.G., and Liggett T.M. A theorem and a counterexample in the theory of semigroups of nonlinear transformations. Transactions of the American Mathematical Society 160 (1971) 263-278
-
(1971)
Transactions of the American Mathematical Society
, vol.160
, pp. 263-278
-
-
Crandall, M.G.1
Liggett, T.M.2
-
21
-
-
0038231522
-
Representing monotone operators by convex functions
-
Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988), Australian National University, Canberra, Australia
-
Fitzpatrick S. Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988). Proceedings of the Centre for Mathematical Analysis vol. 20 (1988), Australian National University, Canberra, Australia 59-65
-
(1988)
Proceedings of the Centre for Mathematical Analysis
, vol.20
, pp. 59-65
-
-
Fitzpatrick, S.1
-
22
-
-
0003786974
-
-
Marcel Dekker, New York
-
Goebel K., and Reich S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings (1984), Marcel Dekker, New York
-
(1984)
Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings
-
-
Goebel, K.1
Reich, S.2
-
23
-
-
0001763991
-
Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs
-
Gossez J.-P. Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs. Journal of Mathematical Analysis and Applications 34 (1971) 371-395
-
(1971)
Journal of Mathematical Analysis and Applications
, vol.34
, pp. 371-395
-
-
Gossez, J.-P.1
-
24
-
-
0026123473
-
On the convergence of the proximal point algorithm for convex minimization
-
Güler O. On the convergence of the proximal point algorithm for convex minimization. SIAM Journal on Control and Optimization 29 (1991) 403-419
-
(1991)
SIAM Journal on Control and Optimization
, vol.29
, pp. 403-419
-
-
Güler, O.1
-
26
-
-
2042504393
-
An alternating projection that does not converge in norm
-
Hundal H.S. An alternating projection that does not converge in norm. Nonlinear Analysis 57 (2004) 35-61
-
(2004)
Nonlinear Analysis
, vol.57
, pp. 35-61
-
-
Hundal, H.S.1
-
28
-
-
18744404859
-
Monotone operators representable by l.s.c. convex functions
-
Martínez-Legaz J.-E., and Svaiter B.F. Monotone operators representable by l.s.c. convex functions. Set-Valued Analysis 13 (2005) 21-46
-
(2005)
Set-Valued Analysis
, vol.13
, pp. 21-46
-
-
Martínez-Legaz, J.-E.1
Svaiter, B.F.2
-
32
-
-
84972488065
-
Monotone (nonlinear) operators in Hilbert space
-
Minty G.J. Monotone (nonlinear) operators in Hilbert space. Duke Mathematical Journal 29 (1962) 341-346
-
(1962)
Duke Mathematical Journal
, vol.29
, pp. 341-346
-
-
Minty, G.J.1
-
34
-
-
4243129234
-
The relevance of convex analysis for the study of monotonicity
-
Penot J.P. The relevance of convex analysis for the study of monotonicity. Nonlinear Analysis 58 (2004) 855-871
-
(2004)
Nonlinear Analysis
, vol.58
, pp. 855-871
-
-
Penot, J.P.1
-
36
-
-
0000847472
-
Extension problems for accretive sets in Banach spaces
-
Reich S. Extension problems for accretive sets in Banach spaces. Journal of Functional Analysis 26 (1977) 378-395
-
(1977)
Journal of Functional Analysis
, vol.26
, pp. 378-395
-
-
Reich, S.1
-
37
-
-
0038313697
-
A limit theorem for projections
-
Reich S. A limit theorem for projections. Linear and Multilinear Algebra 13 (1983) 281-290
-
(1983)
Linear and Multilinear Algebra
, vol.13
, pp. 281-290
-
-
Reich, S.1
-
38
-
-
84972582929
-
On the maximal monotonicity of subdifferential mappings
-
Rockafellar R.T. On the maximal monotonicity of subdifferential mappings. Pacific Journal of Mathematics 33 (1970) 209-216
-
(1970)
Pacific Journal of Mathematics
, vol.33
, pp. 209-216
-
-
Rockafellar, R.T.1
-
44
-
-
5644292074
-
A new proof for Rockafellar's characterization of maximal monotone operators
-
Simons S., and Zǎlinescu C. A new proof for Rockafellar's characterization of maximal monotone operators. Proceedings of the American Mathematical Society 132 (2004) 2969-2972
-
(2004)
Proceedings of the American Mathematical Society
, vol.132
, pp. 2969-2972
-
-
Simons, S.1
Zǎlinescu, C.2
-
46
-
-
0002951308
-
-
Princeton University Press, Princeton, NJ. This is a reprint of mimeographed lecture notes first distributed in 1933.
-
von Neumann J. Functional Operators II: The Geometry of Orthogonal Spaces (1950), Princeton University Press, Princeton, NJ. This is a reprint of mimeographed lecture notes first distributed in 1933.
-
(1950)
Functional Operators II: The Geometry of Orthogonal Spaces
-
-
von Neumann, J.1
-
47
-
-
0001363448
-
On rings of operators. Reduction theory
-
von Neumann J. On rings of operators. Reduction theory. Annals of Mathematics 50 (1949) 401-485
-
(1949)
Annals of Mathematics
, vol.50
, pp. 401-485
-
-
von Neumann, J.1
|