-
1
-
-
34547561650
-
Fitzpatrick functions, cyclic monotonicity, and Rockafellar's antiderivative
-
Bartz, S., Bauschke, H.H., Borwein, J.M., Reich, S., Wang, X.: Fitzpatrick functions, cyclic monotonicity, and Rockafellar's antiderivative. Nonlinear Anal. (in press)
-
Nonlinear Anal. (In Press)
-
-
Bartz, S.1
Bauschke, H.H.2
Borwein, J.M.3
Reich, S.4
Wang, X.5
-
2
-
-
34250724621
-
Fenchel duality, Fitzpatrick functions and the extension of firmly nonexpansive mappings
-
Bauschke, H.H.: Fenchel duality, Fitzpatrick functions and the extension of firmly nonexpansive mappings. Proc. Amer. Math. Soc. 135, 135-139 (2007)
-
(2007)
Proc. Amer. Math. Soc.
, vol.135
, pp. 135-139
-
-
Bauschke, H.H.1
-
3
-
-
49449086907
-
Fitzpatrick functions and continuous linear monotone operators
-
to appear
-
Bauschke, H.H., Borwein, J.M., Wang, X.: Fitzpatrick functions and continuous linear monotone operators. SIAM J. Optim. (to appear)
-
SIAM J. Optim.
-
-
Bauschke, H.H.1
Borwein, J.M.2
Wang, X.3
-
4
-
-
34547606127
-
Fitzpatrick functions: Inequalities, examples and remarks on a problem by S. Fitzpatrick
-
Bauschke, H.H., McLaren, D.A., Sendov, H.S.: Fitzpatrick functions: inequalities, examples and remarks on a problem by S. Fitzpatrick. J. Convex Anal. (in press)
-
J. Convex Anal. (In Press)
-
-
Bauschke, H.H.1
McLaren, D.A.2
Sendov, H.S.3
-
8
-
-
33846488416
-
On the Fitzpatrick family associated to some subdifferentials
-
Burachik, R.S., Fitzpatrick, S.: On the Fitzpatrick family associated to some subdifferentials. J. Nonlinear Convex Anal. 6, 165-171 (2005)
-
(2005)
J. Nonlinear Convex Anal.
, vol.6
, pp. 165-171
-
-
Burachik, R.S.1
Fitzpatrick, S.2
-
9
-
-
0036034569
-
Maximal monotone operators, convex functions and a special family of enlargements
-
Burachik, R.S., Svaiter, B.F.: Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Anal. 10, 297-316 (2002)
-
(2002)
Set-Valued Anal.
, vol.10
, pp. 297-316
-
-
Burachik, R.S.1
Svaiter, B.F.2
-
10
-
-
0042745499
-
Maximal monotonicity, conjugation and the duality product
-
Burachik, R.S., Svaiter, B.F.: Maximal monotonicity, conjugation and the duality product. Proc. Amer. Math. Soc. 131, 2379-2383 (2003)
-
(2003)
Proc. Amer. Math. Soc.
, vol.131
, pp. 2379-2383
-
-
Burachik, R.S.1
Svaiter, B.F.2
-
11
-
-
0010757594
-
Ein Erweiterungssatz für monotone Mengen
-
Debrunner, H., Flor, P.: Ein Erweiterungssatz für monotone Mengen. Arch. Math. 15, 445-447 (1964)
-
(1964)
Arch. Math.
, vol.15
, pp. 445-447
-
-
Debrunner, H.1
Flor, P.2
-
12
-
-
0038231522
-
Representing monotone operators by convex functions
-
Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988) Australian National University, Canberra, Australia
-
Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization (Canberra 1988). In: Proceedings of the Centre for Mathematical Analysis, vol. 20, pp. 59-65. Australian National University, Canberra, Australia (1988)
-
(1988)
Proceedings of the Centre for Mathematical Analysis
, vol.20
, pp. 59-65
-
-
Fitzpatrick, S.1
-
15
-
-
18744404859
-
Monotone operators representable by l.s.c. convex functions
-
Martínez-Legaz, J.-E., Svaiter, B.F.: Monotone operators representable by l.s.c. convex functions. Set.-Valued Anal. 13, 21-46 (2005)
-
(2005)
Set-Valued Anal.
, vol.13
, pp. 21-46
-
-
Martínez-Legaz, J.-E.1
Svaiter, B.F.2
-
16
-
-
0038570235
-
A convex representation of maximal monotone operators
-
Martínez-Legaz, J.-E., Théra, M.: A convex representation of maximal monotone operators. J. Nonlinear Convex Anal. 2, 243-247 (2001)
-
(2001)
J. Nonlinear Convex Anal.
, vol.2
, pp. 243-247
-
-
Martínez-Legaz, J.-E.1
Théra, M.2
-
17
-
-
84972488065
-
Monotone (nonlinear) operators in Hilbert space
-
Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341-346 (1962)
-
(1962)
Duke Math. J.
, vol.29
, pp. 341-346
-
-
Minty, G.J.1
-
18
-
-
4243129234
-
The relevance of convex analysis for the study of monotonicity
-
Penot, J.P.: The relevance of convex analysis for the study of monotonicity. Nonlinear Anal. 58, 855-871 (2004)
-
(2004)
Nonlinear Anal.
, vol.58
, pp. 855-871
-
-
Penot, J.P.1
-
19
-
-
24944580357
-
Fenchel duality, Fitzpatrick functions and the Kirszbraun-Valentine extension theorem
-
Reich, S., Simons, S.: Fenchel duality, Fitzpatrick functions and the Kirszbraun-Valentine extension theorem. Proc. Amer. Math. Soc. 133, 2657-2660 (2005)
-
(2005)
Proc. Amer. Math. Soc.
, vol.133
, pp. 2657-2660
-
-
Reich, S.1
Simons, S.2
-
20
-
-
0004267646
-
-
Princeton University Press Princeton, NJ
-
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)
-
(1970)
Convex Analysis
-
-
Rockafellar, R.T.1
-
23
-
-
5644292074
-
A new proof for Rockafellar's characterization of maximal monotone operators
-
Simons, S., Zǎlinescu, C.: A new proof for Rockafellar's characterization of maximal monotone operators. Proc. Amer. Math. Soc. 132, 2969-2972 (2004)
-
(2004)
Proc. Amer. Math. Soc.
, vol.132
, pp. 2969-2972
-
-
Simons, S.1
Zǎlinescu, C.2
-
24
-
-
33745936299
-
Fenchel duality, Fitzpatrick functions and maximal monotonicity
-
Simons, S., Zǎlinescu, C.: Fenchel duality, Fitzpatrick functions and maximal monotonicity. J. Nonlinear Convex Anal. 6, 1-22 (2005)
-
(2005)
J. Nonlinear Convex Anal.
, vol.6
, pp. 1-22
-
-
Simons, S.1
Zǎlinescu, C.2
-
26
-
-
34547611509
-
A maximality theorem for the sum of maximal monotone operators in non-reflexive Banach spaces
-
Voisei, M.D.: A maximality theorem for the sum of maximal monotone operators in non-reflexive Banach spaces. Math. Sci. Res. J. 10, 36-41 (2006)
-
(2006)
Math. Sci. Res. J.
, vol.10
, pp. 36-41
-
-
Voisei, M.D.1
|