메뉴 건너뛰기




Volumn 56, Issue 5, 2004, Pages 715-738

Projection and proximal point methods: Convergence results and counterexamples

Author keywords

Alternating projections; Averaged projections; Hilbert space; Nonexpansive; Proximal point algorithm; Weak convergence

Indexed keywords

ALGORITHMS; CONVERGENCE OF NUMERICAL METHODS; MATHEMATICAL OPERATORS; PROBLEM SOLVING; SET THEORY; THEOREM PROVING;

EID: 0347269125     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2003.10.010     Document Type: Article
Times cited : (238)

References (55)
  • 1
    • 0013468395 scopus 로고
    • Duality for the sum of convex functions in general Banach spaces
    • J.A. Barroso (Ed.), North-Holland Math. Library, North-Holland, Amsterdam, The Netherlands
    • H. Attouch, H. Brézis, Duality for the sum of convex functions in general Banach spaces, in: J.A. Barroso (Ed.), Aspects of Mathematics and its Applications, North-Holland Math. Library, Vol. 34, North-Holland, Amsterdam, The Netherlands, 1986, pp. 125-133.
    • (1986) Aspects of Mathematics and Its Applications , vol.34 , pp. 125-133
    • Attouch, H.1    Brézis, H.2
  • 3
    • 0002057574 scopus 로고
    • On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces
    • Baillon J.-B., Bruck R.E., Reich S. On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston J. Math. 4:1978;1-9.
    • (1978) Houston J. Math. , vol.4 , pp. 1-9
    • Baillon, J.-B.1    Bruck, R.E.2    Reich, S.3
  • 4
    • 0003851536 scopus 로고    scopus 로고
    • Ph.D. Thesis, Simon Fraser University. Available as Preprint 96:080
    • H.H. Bauschke, Projection Algorithms and Monotone Operators, Ph.D. Thesis, Simon Fraser University, 1996. Available as Preprint 96:080 at www.cecm.sfu.ca/preprints/1996pp.html.
    • (1996) Projection Algorithms and Monotone Operators
    • Bauschke, H.H.1
  • 5
    • 33748894867 scopus 로고    scopus 로고
    • Projection algorithms: Results and open problems
    • D. Butnariu, Y. Censor, & S. Reich. Haifa, 2000, Amsterdam, The Netherlands: Elsevier
    • Bauschke H.H. Projection algorithms: results and open problems. Butnariu D., Censor Y., Reich S. Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, Haifa, 2000. 2001;11-22 Elsevier, Amsterdam, The Netherlands.
    • (2001) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications , pp. 11-22
    • Bauschke, H.H.1
  • 6
    • 0001448913 scopus 로고
    • On the convergence of von Neumann's alternating projection algorithm for two sets
    • Bauschke H.H., Borwein J.M. On the convergence of von Neumann's alternating projection algorithm for two sets. Set-Valued Analysis. 1:1993;185-212.
    • (1993) Set-valued Analysis , vol.1 , pp. 185-212
    • Bauschke, H.H.1    Borwein, J.M.2
  • 7
    • 0037976260 scopus 로고
    • Dykstra's alternating projection algorithm for two sets
    • Bauschke H.H., Borwein J.M. Dykstra's alternating projection algorithm for two sets. J. Approx. Theory. 79:1994;418-443.
    • (1994) J. Approx. Theory , vol.79 , pp. 418-443
    • Bauschke, H.H.1    Borwein, J.M.2
  • 8
    • 0030246542 scopus 로고    scopus 로고
    • On projection algorithms for solving convex feasibility problems
    • Bauschke H.H., Borwein J.M. On projection algorithms for solving convex feasibility problems. SIAM Rev. 38:1996;367-426.
    • (1996) SIAM Rev. , vol.38 , pp. 367-426
    • Bauschke, H.H.1    Borwein, J.M.2
  • 9
    • 0002351732 scopus 로고    scopus 로고
    • The method of cyclic projections for closed convex sets in Hilbert space
    • Y. Censor, & S. Reich. Recent Developments in Optimization Theory and Nonlinear Analysis, Jerusalem, 1995, Providence, RI: American Mathematical Society
    • Bauschke H.H., Borwein J.M., Lewis A.S. The method of cyclic projections for closed convex sets in Hilbert space. Censor Y., Reich S. Recent Developments in Optimization Theory and Nonlinear Analysis, Jerusalem, 1995. Contemporary Mathematics. Vol. 204:1997;1-38 American Mathematical Society, Providence, RI.
    • (1997) Contemporary Mathematics , vol.204 , pp. 1-38
    • Bauschke, H.H.1    Borwein, J.M.2    Lewis, A.S.3
  • 11
    • 0035351666 scopus 로고    scopus 로고
    • A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces
    • Bauschke H.H., Combettes P.L. A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26:2001;248-264.
    • (2001) Math. Oper. Res. , vol.26 , pp. 248-264
    • Bauschke, H.H.1    Combettes, P.L.2
  • 12
    • 0013529225 scopus 로고    scopus 로고
    • Fejér monotonicity and weak convergence of an accelerated method of projections
    • M. Théra. Limoges, 1999, Providence, RI: American Mathematical Society
    • Bauschke H.H., Deutsch F., Hundal H., Park S.-H. Fejér monotonicity and weak convergence of an accelerated method of projections. Théra M. Constructive, Experimental, and Nonlinear Analysis, Limoges, 1999. 2000;1-6 American Mathematical Society, Providence, RI.
    • (2000) Constructive, Experimental, and Nonlinear Analysis , pp. 1-6
    • Bauschke, H.H.1    Deutsch, F.2    Hundal, H.3    Park, S.-H.4
  • 13
    • 0042363723 scopus 로고    scopus 로고
    • Accelerating the convergence of the method of alternating projections
    • Bauschke H.H., Deutsch F., Hundal H., Park S.-H. Accelerating the convergence of the method of alternating projections. Trans. Am. Math. Soc. 355:2003;3433-3461.
    • (2003) Trans. Am. Math. Soc. , vol.355 , pp. 3433-3461
    • Bauschke, H.H.1    Deutsch, F.2    Hundal, H.3    Park, S.-H.4
  • 15
    • 0001336448 scopus 로고
    • The method of successive projection for finding a common point of convex sets
    • Bregman L.M. The method of successive projection for finding a common point of convex sets. Sov. Math. Dokl. 6:1965;688-692.
    • (1965) Sov. Math. Dokl. , vol.6 , pp. 688-692
    • Bregman, L.M.1
  • 17
    • 51249180487 scopus 로고
    • Produits infinis de résolvantes
    • Brézis H., Lions P.-L. Produits infinis de résolvantes. Isr. J. Math. 29:1978;329-345.
    • (1978) Isr. J. Math. , vol.29 , pp. 329-345
    • Brézis, H.1    Lions, P.-L.2
  • 18
    • 0000256894 scopus 로고
    • Nonexpansive projections and resolvents of accretive operators in Banach spaces
    • Bruck R.E., Reich S. Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3:1977;459-470.
    • (1977) Houston J. Math. , vol.3 , pp. 459-470
    • Bruck, R.E.1    Reich, S.2
  • 20
    • 0035768299 scopus 로고    scopus 로고
    • On sequential and parallel projection algorithms for feasibility and optimization
    • Y. Censor, & M. Ding. Visualization and Optimization Techniques, Bellingham, WA: SPIE - The International Society for Optical Engineering
    • Censor Y. On sequential and parallel projection algorithms for feasibility and optimization. Censor Y., Ding M. Visualization and Optimization Techniques. Proceedings of SPIE. Vol. 4553:2001;1-9 SPIE - The International Society for Optical Engineering, Bellingham, WA.
    • (2001) Proceedings of SPIE , vol.4553 , pp. 1-9
    • Censor, Y.1
  • 21
    • 77956677460 scopus 로고    scopus 로고
    • Averaging strings of sequential iterations for convex feasibility problems
    • D. Butnariu, Y. Censor, & S. Reich. Haifa, 2000, Amsterdam, The Netherlands: Elsevier
    • Censor Y., Elfving T., Herman G.T. Averaging strings of sequential iterations for convex feasibility problems. Butnariu D., Censor Y., Reich S. Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, Haifa, 2000. 2001;101-114 Elsevier, Amsterdam, The Netherlands.
    • (2001) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications , pp. 101-114
    • Censor, Y.1    Elfving, T.2    Herman, G.T.3
  • 22
    • 0242468035 scopus 로고    scopus 로고
    • Convergence of string-averaging projection schemes for inconsistent convex feasibility problems
    • Censor Y., Tom E. Convergence of string-averaging projection schemes for inconsistent convex feasibility problems. Optim. Methods Software. 18:2003;543-554.
    • (2003) Optim. Methods Software , vol.18 , pp. 543-554
    • Censor, Y.1    Tom, E.2
  • 25
    • 0031148181 scopus 로고    scopus 로고
    • Hilbertian convex feasibility problem: Convergence of projection methods
    • Combettes P.L. Hilbertian convex feasibility problem. convergence of projection methods Appl. Math. Optim. 35:1997;311-330.
    • (1997) Appl. Math. Optim. , vol.35 , pp. 311-330
    • Combettes, P.L.1
  • 26
    • 0242701031 scopus 로고    scopus 로고
    • Finding common fixed points of strict paracontractions by averaging strings of sequential iterations
    • Crombez G. Finding common fixed points of strict paracontractions by averaging strings of sequential iterations. J. Nonlinear and Convex Anal. 3:2002;345-351.
    • (2002) J. Nonlinear and Convex Anal. , vol.3 , pp. 345-351
    • Crombez, G.1
  • 28
    • 0040069594 scopus 로고
    • On the unrestricted iteration of projections in Hilbert space
    • Dye J.M., Reich S. On the unrestricted iteration of projections in Hilbert space. J. Math. Anal. Appl. 156:1991;101-119.
    • (1991) J. Math. Anal. Appl. , vol.156 , pp. 101-119
    • Dye, J.M.1    Reich, S.2
  • 29
    • 51249189005 scopus 로고
    • An example concerning fixed points
    • Genel A., Lindenstrauss J. An example concerning fixed points. Isr. J. Math. 22:1975;81-86.
    • (1975) Isr. J. Math. , vol.22 , pp. 81-86
    • Genel, A.1    Lindenstrauss, J.2
  • 32
    • 0026123473 scopus 로고
    • On the convergence of the proximal point algorithm for convex minimization
    • Güler O. On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29:1991;403-419.
    • (1991) SIAM J. Control Optim. , vol.29 , pp. 403-419
    • Güler, O.1
  • 33
    • 0039220385 scopus 로고
    • A general formula on the conjugate of the difference of functions
    • Hiriart-Urruty J.-B. A general formula on the conjugate of the difference of functions. Can. Math. Bull. 29:1986;482-485.
    • (1986) Can. Math. Bull. , vol.29 , pp. 482-485
    • Hiriart-Urruty, J.-B.1
  • 34
    • 0347959526 scopus 로고    scopus 로고
    • An alternating projection that does not converge in norm
    • as Preprint 02:189
    • H. Hundal, An alternating projection that does not converge in norm, Nonlinear Anal., available at http://www.cecm.sfu.ca/preprints/2002pp.html as Preprint 02:189.
    • Nonlinear Anal.
    • Hundal, H.1
  • 35
    • 0001805162 scopus 로고
    • Über die zusammenziehenden und Lipschitzschen Transformationen
    • Kirszbraun M.D. Über die zusammenziehenden und Lipschitzschen Transformationen. Fund Math. 22:1934;77-108.
    • (1934) Fund Math. , vol.22 , pp. 77-108
    • Kirszbraun, M.D.1
  • 36
    • 0012593248 scopus 로고    scopus 로고
    • Fixed points of holomorphic mappings: A metric approach
    • W.A. Kirk, & B. Sims. Dordrecht, The Netherlands: Kluwer
    • Kuczumow T., Reich S., Shoikhet D. Fixed points of holomorphic mappings: a metric approach. Kirk W.A., Sims B. Handbook of Metric Fixed Point Theory. 2001;437-515 Kluwer, Dordrecht, The Netherlands.
    • (2001) Handbook of Metric Fixed Point Theory , pp. 437-515
    • Kuczumow, T.1    Reich, S.2    Shoikhet, D.3
  • 37
    • 0010677376 scopus 로고
    • Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric II
    • Kuzcumow T., Stachura A. Extensions of nonexpansive mappings in the Hilbert ball with the hyperbolic metric II. Commentat. Math. Univ. Carolin. 29:1988;403-410.
    • (1988) Commentat. Math. Univ. Carolin. , vol.29 , pp. 403-410
    • Kuzcumow, T.1    Stachura, A.2
  • 38
    • 0001566816 scopus 로고
    • Régularisation d'inéquations variationnelles par approximations successives
    • Martinet B. Régularisation d'inéquations variationnelles par approximations successives. Rev. Fr. d'Informatique Recherche Opér. 4:1970;154-158.
    • (1970) Rev. Fr. d'Informatique Recherche Opér. , vol.4 , pp. 154-158
    • Martinet, B.1
  • 39
    • 49749202269 scopus 로고
    • On a relaxation method of solving systems of linear inequalities
    • Merzlyakov Y.I. On a relaxation method of solving systems of linear inequalities. USSR Comput. Math. Math. Phys. 2:1963;504-510.
    • (1963) USSR Comput. Math. Math. Phys. , vol.2 , pp. 504-510
    • Merzlyakov, Y.I.1
  • 40
    • 84972488065 scopus 로고
    • Monotone (nonlinear) operators in Hilbert space
    • Minty G.J. Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29:1962;341-346.
    • (1962) Duke Math. J. , vol.29 , pp. 341-346
    • Minty, G.J.1
  • 41
    • 0000276924 scopus 로고
    • Proximité et dualité dans un espace hilbertien
    • Moreau J.-J. Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France. 93:1965;273-299.
    • (1965) Bull. Soc. Math. France , vol.93 , pp. 273-299
    • Moreau, J.-J.1
  • 42
    • 0000928424 scopus 로고
    • Product formulas, nonlinear semigroups, and accretive operators
    • Reich S. Product formulas, nonlinear semigroups, and accretive operators. J. Funct. Anal. 36:1980;147-168.
    • (1980) J. Funct. Anal. , vol.36 , pp. 147-168
    • Reich, S.1
  • 43
    • 0009190538 scopus 로고
    • On the asymptotic behavior of nonlinear semigroups and the range of accretive operators
    • Reich S. On the asymptotic behavior of nonlinear semigroups and the range of accretive operators. J. Math. Anal. Appl. 79:1981;113-126.
    • (1981) J. Math. Anal. Appl. , vol.79 , pp. 113-126
    • Reich, S.1
  • 44
    • 0344437160 scopus 로고
    • On the asymptotic behavior of nonlinear semigroups and the range of accretive operators II
    • Reich S. On the asymptotic behavior of nonlinear semigroups and the range of accretive operators II. J. Math. Anal. Appl. 87:1982;134-146.
    • (1982) J. Math. Anal. Appl. , vol.87 , pp. 134-146
    • Reich, S.1
  • 45
    • 0038313697 scopus 로고
    • A limit theorem for projections
    • Reich S. A limit theorem for projections. Linear and Multilinear Algebra. 13:1983;281-290.
    • (1983) Linear and Multilinear Algebra , vol.13 , pp. 281-290
    • Reich, S.1
  • 46
    • 0039819760 scopus 로고
    • Averaged mappings in the Hilbert ball
    • Reich S. Averaged mappings in the Hilbert ball. J. Math. Anal. Appl. 109:1985;199-206.
    • (1985) J. Math. Anal. Appl. , vol.109 , pp. 199-206
    • Reich, S.1
  • 47
    • 0001145214 scopus 로고
    • The alternating algorithm of von Neumann in the Hilbert ball
    • Reich S. The alternating algorithm of von Neumann in the Hilbert ball. Dynamic Systems Appl. 2:1993;21-25.
    • (1993) Dynamic Systems Appl. , vol.2 , pp. 21-25
    • Reich, S.1
  • 48
    • 84972582929 scopus 로고
    • On the maximal monotonicity of subdifferential mappings
    • Rockafellar R.T. On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33:1970;209-216.
    • (1970) Pacific J. Math. , vol.33 , pp. 209-216
    • Rockafellar, R.T.1
  • 49
    • 0016985417 scopus 로고
    • Monotone operators and the proximal point algorithm
    • Rockafellar R.T. Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14:1976;877-898.
    • (1976) SIAM J. Control Optim. , vol.14 , pp. 877-898
    • Rockafellar, R.T.1
  • 50
    • 0001363448 scopus 로고
    • On rings of operators. Reduction theory
    • von Neumann J. On rings of operators. Reduction theory. Ann. Math. 50:1949;401-485.
    • (1949) Ann. Math. , vol.50 , pp. 401-485
    • Von Neumann, J.1
  • 51
    • 0002951308 scopus 로고
    • Princeton, NJ: Princeton University Press. (This is a reprint of mimeographed lecture notes first distributed in 1933.)
    • von Neumann J. Functional Operators II: The Geometry of Orthogonal Spaces. 1950;Princeton University Press, Princeton, NJ. (This is a reprint of mimeographed lecture notes first distributed in 1933.).
    • (1950) Functional Operators II: The Geometry of Orthogonal Spaces
    • Von Neumann, J.1
  • 52
    • 51249194625 scopus 로고
    • On the factorization of matrices
    • Wiener N. On the factorization of matrices. Comment. Math. Helv. 29:1955;97-111.
    • (1955) Comment. Math. Helv. , vol.29 , pp. 97-111
    • Wiener, N.1
  • 53
    • 77956693893 scopus 로고    scopus 로고
    • The hybrid steepest descent method for the variational inequality problem over the intersection of fixed points sets of nonexpansive mappings
    • D. Butnariu, Y. Censor, & S. Reich. Haifa, 2000, Amsterdam, The Netherlands: Elsevier
    • Yamada I. The hybrid steepest descent method for the variational inequality problem over the intersection of fixed points sets of nonexpansive mappings. Butnariu D., Censor Y., Reich S. Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, Haifa, 2000. 2001;473-504 Elsevier, Amsterdam, The Netherlands.
    • (2001) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications , pp. 473-504
    • Yamada, I.1
  • 55
    • 0002130882 scopus 로고
    • Projections on convex sets in Hilbert space and spectral theory
    • E.H. Zarantonello. New York, NY: Academic Press
    • Zarantonello E.H. Projections on convex sets in Hilbert space and spectral theory. Zarantonello E.H. Contributions to Nonlinear Functional Analysis. 1971;237-424 Academic Press, New York, NY.
    • (1971) Contributions to Nonlinear Functional Analysis , pp. 237-424
    • Zarantonello, E.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.