-
2
-
-
31544452808
-
-
A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, Jr., J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science 2006, 311, 484.
-
(2006)
Science
, vol.311
, pp. 484
-
-
Ragauskas, A.J.1
Williams, C.K.2
Davison, B.H.3
Britovsek, G.4
Cairney, J.5
Eckert, C.A.6
Frederick Jr., W.J.7
Hallett, J.P.8
Leak, D.J.9
Liotta, C.L.10
Mielenz, J.R.11
Murphy, R.12
Templer, R.13
Tschaplinski, T.14
-
3
-
-
54749105937
-
-
For a thought-provoking article which examines both sides of this issue, see Chem. Eng. News, 2007, 8, 12.
-
For a thought-provoking article which examines both sides of this issue, see Chem. Eng. News, 2007, 8, 12.
-
-
-
-
4
-
-
33746655320
-
-
See also: a
-
See also: a) J. Hill, E. Nelson, D. Tilman, S. Polasky, D. Tiffany, Proc. Natl. Acad. Sci. USA 2006, 103, 11206;
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 11206
-
-
Hill, J.1
Nelson, E.2
Tilman, D.3
Polasky, S.4
Tiffany, D.5
-
6
-
-
31544462628
-
-
c) A. E. Farrell, R. J. Plevin, B. T. Turner, A. D. Jones, M. O'Hare, D. M. Kammen, Science 2006, 311, 506;
-
(2006)
Science
, vol.311
, pp. 506
-
-
Farrell, A.E.1
Plevin, R.J.2
Turner, B.T.3
Jones, A.D.4
O'Hare, M.5
Kammen, D.M.6
-
8
-
-
41249088527
-
-
J. N. Chheda, G. W. Huber, J. A. Dumesic, Angew. Chem. 2007, 119, 7298;
-
(2007)
Angew. Chem
, vol.119
, pp. 7298
-
-
Chheda, J.N.1
Huber, G.W.2
Dumesic, J.A.3
-
10
-
-
34250835050
-
-
Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Nature 2007, 447, 982.
-
(2007)
Nature
, vol.447
, pp. 982
-
-
Román-Leshkov, Y.1
Barrett, C.J.2
Liu, Z.Y.3
Dumesic, J.A.4
-
11
-
-
34250811496
-
-
H. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Science 2007, 316, 1597.
-
(2007)
Science
, vol.316
, pp. 1597
-
-
Zhao, H.1
Holladay, J.E.2
Brown, H.3
Zhang, Z.C.4
-
12
-
-
34047189780
-
-
J. N. Chheda, Y. Román-Leshkov, J. A. Dumesic, Green Chem. 2007, 9, 342.
-
(2007)
Green Chem
, vol.9
, pp. 342
-
-
Chheda, J.N.1
Román-Leshkov, Y.2
Dumesic, J.A.3
-
14
-
-
54749110024
-
-
In practice this may not be a crucial parameter. Since the only reagent consumed in this process is hydrogen chloride, a flow reactor could be envisaged where the saccharide is continuously introduced, 1-4 are continuously removed, and the concentration of HCl is held constant by introduction of the gas into the reactor. A preliminary modeling study of this process is included in the Supporting Information.
-
In practice this may not be a crucial parameter. Since the only reagent consumed in this process is hydrogen chloride, a flow reactor could be envisaged where the saccharide is continuously introduced, 1-4 are continuously removed, and the concentration of HCl is held constant by introduction of the gas into the reactor. A preliminary modeling study of this process is included in the Supporting Information.
-
-
-
-
16
-
-
54749110777
-
-
Avantium Technologies press release
-
Avantium Technologies press release: http://www.avantium.com/index.php?p= 115&n=2.
-
-
-
-
17
-
-
54749092222
-
-
The literature yield for this reaction is up to 95, depending on which solvent is used: K. Hamada, G. Suzukamo, K. Fujisawa, Eur. Pat. Appl, 1982, 44186A1
-
The literature yield for this reaction is up to 95%, depending on which solvent is used: K. Hamada, G. Suzukamo, K. Fujisawa, Eur. Pat. Appl., 1982, 44186A1.
-
-
-
-
18
-
-
54749090147
-
-
Jap. P. 58013576, 1983.
-
Jap. P. 58013576, 1983.
-
-
-
-
19
-
-
54749115320
-
-
A reviewer brought the importance of processing these materials to negligible halogen levels to our attention. To this end, we have determined that no residual solvent or CMF (2) is present in the distillates to the detection limits of 1H and 13C NMR, and analysis by ASTM D4208 (oxygen bomb combustion selective electrode method) shows that the chlorine content is <0.5
-
13C NMR, and analysis by ASTM D4208 (oxygen bomb combustion selective electrode method) shows that the chlorine content is <0.5%.
-
-
-
-
21
-
-
33947610166
-
-
K. Michail, V. Matzi, A. Maier, R. Herwig, J. Greilberger, H. Juan, O. Kunert, R. Wintersteiger, Anal. Bioanal. Chem. 2007, 387, 2801.
-
(2007)
Anal. Bioanal. Chem
, vol.387
, pp. 2801
-
-
Michail, K.1
Matzi, V.2
Maier, A.3
Herwig, R.4
Greilberger, J.5
Juan, H.6
Kunert, O.7
Wintersteiger, R.8
-
24
-
-
0026451163
-
-
For example
-
For example: K. Sanda, L. Rigal, A. Gaset, J. Chem. Technol. Biotechnol. 1992, 55, 139.
-
(1992)
J. Chem. Technol. Biotechnol
, vol.55
, pp. 139
-
-
Sanda, K.1
Rigal, L.2
Gaset, A.3
-
26
-
-
45149142789
-
-
HMFand CMFare also readily interconvertable: a K. Sanda, L. Rigal, A. Gaset, Carbohydr. Res. 1989, 187, 15;
-
HMFand CMFare also readily interconvertable: a) K. Sanda, L. Rigal, A. Gaset, Carbohydr. Res. 1989, 187, 15;
-
-
-
-
28
-
-
0032940190
-
-
2-(2-Hydroxyacetyl)furan (3) is a well-known aroma component of several natural substances, for example, toasted oak in wine barrels: I. Cutzach, P. Chatonnet, R. Henry, D. Dubourdieu, J. Agric. Food Chem. 1999, 47, 1663.
-
2-(2-Hydroxyacetyl)furan (3) is a well-known aroma component of several natural substances, for example, toasted oak in wine barrels: I. Cutzach, P. Chatonnet, R. Henry, D. Dubourdieu, J. Agric. Food Chem. 1999, 47, 1663.
-
-
-
-
29
-
-
54749107711
-
-
Levulinic acid is a well-studied derivative of cellulosic biomass and is considered a promising building block for bio-derived polymers and fuel additives; see: Biorefineries-Industrial Processes and Products: Status Quo and Future Directions Eds, B. Kamm, P. R. Gruber, M. Kamm, Wiley-VCH, Weinheim, 2007
-
Levulinic acid is a well-studied derivative of cellulosic biomass and is considered a promising building block for bio-derived polymers and fuel additives; see: Biorefineries-Industrial Processes and Products: Status Quo and Future Directions (Eds.: B. Kamm, P. R. Gruber, M. Kamm), Wiley-VCH, Weinheim, 2007.
-
-
-
|