-
1
-
-
0002914202
-
Full information estimation in the presence of incomplete data
-
Marcoulides GA, Schumacker RE, eds. Mahwah, NJ: Lawrence Erlbaum Publishers
-
Arbuckle JL. Full information estimation in the presence of incomplete data. In: Marcoulides GA, Schumacker RE, eds. Advanced Structural Equation Modeling. Mahwah, NJ: Lawrence Erlbaum Publishers; 1996:243-77.
-
(1996)
Advanced Structural Equation Modeling
, pp. 243-277
-
-
Arbuckle, J.L.1
-
2
-
-
0035756118
-
The impact of nonnormality on full information maximum likelihood estimation for structural equation models with missing data
-
Enders CK. The impact of nonnormality on full information maximum likelihood estimation for structural equation models with missing data. Psychol Methods 2001;6:352-70.
-
(2001)
Psychol Methods
, vol.6
, pp. 352-370
-
-
Enders, C.K.1
-
3
-
-
0142073292
-
Using the EM algorithm to estimate coefficient alpha for scales with item level missing data
-
Enders CK. Using the EM algorithm to estimate coefficient alpha for scales with item level missing data. Psychol Methods 2003;8:322-37.
-
(2003)
Psychol Methods
, vol.8
, pp. 322-337
-
-
Enders, C.K.1
-
4
-
-
0000885702
-
The relative performance of full information maximum likelihood estimation for missing data in structural equation models
-
Enders CK, Bandalos DL. The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling 2001;8:430-57.
-
(2001)
Structural Equation Modeling
, vol.8
, pp. 430-457
-
-
Enders, C.K.1
Bandalos, D.L.2
-
5
-
-
0000497010
-
Treatments of missing data: A Monte Carlo comparison of RBHDI, iterative stochastic regression imputation, and expectation-maximization
-
Gold MS, Bentler PM. Treatments of missing data: a Monte Carlo comparison of RBHDI, iterative stochastic regression imputation, and expectation- maximization. Structural Equation Modeling 2000;7:319-55.
-
(2000)
Structural Equation Modeling
, vol.7
, pp. 319-355
-
-
Gold, M.S.1
Bentler, P.M.2
-
6
-
-
0030527014
-
Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures
-
Graham JW, Hofer SM, MacKinnon DP. Maximizing the usefulness of data obtained with planned missing value patterns: an application of maximum likelihood procedures. Multivariate Behav Res 1996;31:197-218.
-
(1996)
Multivariate Behav Res
, vol.31
, pp. 197-218
-
-
Graham, J.W.1
Hofer, S.M.2
MacKinnon, D.P.3
-
7
-
-
0003245614
-
On the performance of multiple imputation for multivariate data with small sample size
-
Hoyle RH, ed. Thousand Oaks, CA: Sage
-
Graham JW, Schafer JL. On the performance of multiple imputation for multivariate data with small sample size. In: Hoyle RH, ed. Statistical Strategies for Small Sample Research. Thousand Oaks, CA: Sage; 1999:1-29.
-
(1999)
Statistical Strategies for Small Sample Research
, pp. 1-29
-
-
Graham, J.W.1
Schafer, J.L.2
-
8
-
-
0001010853
-
On structural equation modeling with data that are not missing completely at random
-
Muthén B, Kaplan D, Hollis M. On structural equation modeling with data that are not missing completely at random. Psychometrika 1987;52:431-62.
-
(1987)
Psychometrika
, vol.52
, pp. 431-462
-
-
Muthén, B.1
Kaplan, D.2
Hollis, M.3
-
9
-
-
21844489278
-
The impact of BIB spiraling-induced missing data patterns on goodness-of-fit tests in factor analysis
-
Kaplan D. The impact of BIB spiraling-induced missing data patterns on goodness-of-fit tests in factor analysis. J Educ Behav Stat 1995;20:69-82.
-
(1995)
J Educ Behav Stat
, vol.20
, pp. 69-82
-
-
Kaplan, D.1
-
10
-
-
0002298117
-
Longitudinal and multi-group modeling with missing data
-
Little TD, Schnabel KU, Baumert J, eds. Mahwah, NJ: Erlbaum
-
Wothke W. Longitudinal and multi-group modeling with missing data. In: Little TD, Schnabel KU, Baumert J, eds. Modeling Longitudinal and Multiple Group Data: Practical Issues, Applied Approaches and Specific Examples. Mahwah, NJ: Erlbaum; 2000:219-40.
-
(2000)
Modeling Longitudinal and Multiple Group Data: Practical Issues, Applied Approaches and Specific Examples
, pp. 219-240
-
-
Wothke, W.1
-
11
-
-
85047673373
-
Missing data: Our view of the state of the art
-
Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods 2002;7:147-77.
-
(2002)
Psychol Methods
, vol.7
, pp. 147-177
-
-
Schafer, J.L.1
Graham, J.W.2
-
12
-
-
1842548441
-
Finding a solution for missing data
-
Azar B. Finding a solution for missing data. Monit Psychol 2002;33:70.
-
(2002)
Monit Psychol
, vol.33
, pp. 70
-
-
Azar, B.1
-
13
-
-
12744272198
-
Missing data in educational research: A review of reporting practices and suggestions for improvement
-
Peugh JL, Enders CK. Missing data in educational research: a review of reporting practices and suggestions for improvement. Rev Educ Res 2004;74:525-56.
-
(2004)
Rev Educ Res
, vol.74
, pp. 525-556
-
-
Peugh, J.L.1
Enders, C.K.2
-
14
-
-
25144472336
-
Are missing outcome data adequately handled? A review of published randomized controlled trials in major medical journals
-
Wood AM, White IR, Thompson SG. Are missing outcome data adequately handled? a review of published randomized controlled trials in major medical journals. Clin Trials 2004;1:368-76.
-
(2004)
Clin Trials
, vol.1
, pp. 368-376
-
-
Wood, A.M.1
White, I.R.2
Thompson, S.G.3
-
15
-
-
0017133178
-
Inference and missing data
-
Rubin DB. Inference and missing data. Biometrika 1976;63:581-92.
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
Rubin, D.B.1
-
16
-
-
0035755636
-
A comparison of inclusive and restrictive strategies in modern missing data procedures
-
Collins LM, Schafer JL, Kam C-H. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol Methods 2001;6:330-51.
-
(2001)
Psychol Methods
, vol.6
, pp. 330-351
-
-
Collins, L.M.1
Schafer, J.L.2
Kam, C.-H.3
-
17
-
-
2642683199
-
Missing quality of life data in cancer clinical trials: Serious problems and challenges
-
Bernhard J, Cella DF, Coates AS, Fallowfield L, Ganz PA, Moinpour CM, Mosconi P, Osoba D, Simes J, Hurny C. Missing quality of life data in cancer clinical trials: serious problems and challenges. Stat Med 1998;17:517-32.
-
(1998)
Stat Med
, vol.17
, pp. 517-532
-
-
Bernhard, J.1
Cella, D.F.2
Coates, A.S.3
Fallowfield, L.4
Ganz, P.A.5
Moinpour, C.M.6
Mosconi, P.7
Osoba, D.8
Simes, J.9
Hurny, C.10
-
18
-
-
2142647296
-
What do we do with missing data? Some options for analysis of incomplete data
-
Raghunathan TE. What do we do with missing data? Some options for analysis of incomplete data. Annu Rev Public Health 2004;25:99-117.
-
(2004)
Annu Rev Public Health
, vol.25
, pp. 99-117
-
-
Raghunathan, T.E.1
-
20
-
-
4243828610
-
Informative dropout in longitudinal data analysis
-
Diggle PJ, Kenward MG. Informative dropout in longitudinal data analysis (with discussion). Appl Stat 1994;43:49-73.
-
(1994)
Appl Stat
, vol.43
, pp. 49-73
-
-
Diggle, P.J.1
Kenward, M.G.2
-
21
-
-
21144483152
-
Pattern-mixture models for multivariate incomplete data
-
Little RJA. Pattern-mixture models for multivariate incomplete data. J Am Stat Assoc 1993;88:125-34.
-
(1993)
J Am Stat Assoc
, vol.88
, pp. 125-134
-
-
Little, R.J.A.1
-
22
-
-
0242436685
-
Should imputation of missing data condition on all observed variables?
-
American Statistical Association
-
Little RJA, Raghunathan T. Should imputation of missing data condition on all observed variables? Proceedings of the Section on Survey Research Methods. American Statistical Association; 1997:617-22.
-
(1997)
Proceedings of the Section on Survey Research Methods
, pp. 617-622
-
-
Little, R.J.A.1
Raghunathan, T.2
-
23
-
-
0038973680
-
A multiple imputation analysis of a case-control study of the risk of primary cardiac arrest among pharmacologically treated hypertensive
-
Raghunathan TE, Siscovick DS. A multiple imputation analysis of a case-control study of the risk of primary cardiac arrest among pharmacologically treated hypertensive. Appl Stat 1996;45:335-52.
-
(1996)
Appl Stat
, vol.45
, pp. 335-352
-
-
Raghunathan, T.E.1
Siscovick, D.S.2
-
25
-
-
4444283472
-
Marginal analysis of incomplete longitudinal binary data: A cautionary note on LOCF imputation
-
Cook RJ, Zeng L, Yi GY. Marginal analysis of incomplete longitudinal binary data: a cautionary note on LOCF imputation. Biometrics 2004;60:820-8.
-
(2004)
Biometrics
, vol.60
, pp. 820-828
-
-
Cook, R.J.1
Zeng, L.2
Yi, G.Y.3
-
26
-
-
10644222277
-
Analyzing incomplete longitudinal clinical trial data
-
Molenberghs G, Thijs H, Jansen I, Beunckens C, Kenward MG, Mallinckrodt C, Carroll RJ. Analyzing incomplete longitudinal clinical trial data. Biostatistics 2004;5:445-64.
-
(2004)
Biostatistics
, vol.5
, pp. 445-464
-
-
Molenberghs, G.1
Thijs, H.2
Jansen, I.3
Beunckens, C.4
Kenward, M.G.5
Mallinckrodt, C.6
Carroll, R.J.7
-
28
-
-
33645862952
-
Estimation by maximum likelihood
-
Everitt B, Howell DC, eds. West Sussex, UK: Wiley
-
Enders CK. Estimation by maximum likelihood. In: Everitt B, Howell DC, eds. Encyclopedia of Behavioral Statistics. West Sussex, UK: Wiley; 2005:1164-70.
-
(2005)
Encyclopedia of Behavioral Statistics
, pp. 1164-1170
-
-
Enders, C.K.1
-
30
-
-
0347249765
-
Adding missing-data relevant variables to FIML-based structural equation models
-
Graham JW. Adding missing-data relevant variables to FIML-based structural equation models. Structural Equation Modeling 2003;10:80-100.
-
(2003)
Structural Equation Modeling
, vol.10
, pp. 80-100
-
-
Graham, J.W.1
-
31
-
-
84936853890
-
A test of missing completely at random for multivariate data with missing values
-
Little RJA. A test of missing completely at random for multivariate data with missing values. J Am Stat Assoc 1988;83:1198-1202.
-
(1988)
J Am Stat Assoc
, vol.83
, pp. 1198-1202
-
-
Little, R.J.A.1
-
32
-
-
0002717645
-
Analysis with missing data in prevention research
-
Bryant KJ, Windel M, eds. Washington, DC: American Psychological Association
-
Graham JW, Hofer SM, Donaldson SI, MacKinnon DP, Schafer JL. Analysis with missing data in prevention research. In: Bryant KJ, Windel M, eds. The Science of Prevention: Methodological Advances from Alcohol and Substance Abuse Research. Washington, DC: American Psychological Association; 1997:325-66.
-
(1997)
The Science of Prevention: Methodological Advances from Alcohol and Substance Abuse Research
, pp. 325-366
-
-
Graham, J.W.1
Hofer, S.M.2
Donaldson, S.I.3
MacKinnon, D.P.4
Schafer, J.L.5
-
33
-
-
0345734935
-
Likelihood based frequentist inference when data are missing at random
-
Kenward MG, Molenberghs G. Likelihood based frequentist inference when data are missing at random. Stat Sci 1998;13:236-47.
-
(1998)
Stat Sci
, vol.13
, pp. 236-247
-
-
Kenward, M.G.1
Molenberghs, G.2
-
34
-
-
0034555721
-
Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data
-
Becker M, Sobel M, eds. Malden, MA: Blackwell
-
Yuan K-H, Bentler PM. Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. In: Becker M, Sobel M, eds. Sociological Methodology 2000. Malden, MA: Blackwell; 2000:165-200.
-
(2000)
Sociological Methodology 2000
, pp. 165-200
-
-
Yuan, K.-H.1
Bentler, P.M.2
-
35
-
-
0036400704
-
Applying the Bollen-Stine bootstrap for goodness-of-fit measures to structural equation models with missing data
-
Enders CK. Applying the Bollen-Stine bootstrap for goodness-of-fit measures to structural equation models with missing data. Multivariate Behav Res 2002;37:359-77.
-
(2002)
Multivariate Behav Res
, vol.37
, pp. 359-377
-
-
Enders, C.K.1
-
36
-
-
32944463452
-
A SAS macro for implementing the modified Bollen-Stine bootstrap for missing data: Implementing the bootstrap using existing structural equation modeling software
-
Enders CK. A SAS macro for implementing the modified Bollen-Stine bootstrap for missing data: implementing the bootstrap using existing structural equation modeling software. Structural Equation Modeling 2005;12:620-41.
-
(2005)
Structural Equation Modeling
, vol.12
, pp. 620-641
-
-
Enders, C.K.1
-
38
-
-
0034339545
-
Multiple imputation for missing data: A cautionary tale
-
Allison PD. Multiple imputation for missing data: a cautionary tale. Sociol Methods Res 2000;28:301-9.
-
(2000)
Sociol Methods Res
, vol.28
, pp. 301-309
-
-
Allison, P.D.1
-
40
-
-
0000265107
-
Large-sample significance levels from multiple-imputed data using moment-based statistics and an F reference distribution
-
Li KH, Raghunathan TE, Rubin DB. Large-sample significance levels from multiple-imputed data using moment-based statistics and an F reference distribution. J Am Stat Assoc 1991;86:1065-73.
-
(1991)
J Am Stat Assoc
, vol.86
, pp. 1065-1073
-
-
Li, K.H.1
Raghunathan, T.E.2
Rubin, D.B.3
-
41
-
-
2442736478
-
Small-sample degrees of freedom with multiple imputation
-
Barnard J, Rubin DB. Small-sample degrees of freedom with multiple imputation. Biometrika 1999;86:948-55.
-
(1999)
Biometrika
, vol.86
, pp. 948-955
-
-
Barnard, J.1
Rubin, D.B.2
-
42
-
-
0032219074
-
Multiple imputation for multivariate missing data problems: A data analyst's perspective
-
Schafer JL, Olsen MK. Multiple imputation for multivariate missing data problems: a data analyst's perspective. Multivariate Behav Res 1998;33:545-71.
-
(1998)
Multivariate Behav Res
, vol.33
, pp. 545-571
-
-
Schafer, J.L.1
Olsen, M.K.2
|