메뉴 건너뛰기




Volumn 68, Issue 3, 2006, Pages 427-436

A primer on the use of modern missing-data methods in psychosomatic medicine research

Author keywords

Attrition; Direct maximum likelihood; Full information maximum likelihood; Maximum likelihood; Missing data; Multiple imputation

Indexed keywords

ANALYTICAL RESEARCH; ARTICLE; COMPUTER ANALYSIS; COMPUTER PROGRAM; METHODOLOGY; PRIORITY JOURNAL; PSYCHOSOMATICS; QUALITY OF LIFE; HUMAN; INFORMATION PROCESSING; RESEARCH; REVIEW; STATISTICAL ANALYSIS; STATISTICAL MODEL; STATISTICS;

EID: 33746068696     PISSN: 00333174     EISSN: None     Source Type: Journal    
DOI: 10.1097/01.psy.0000221275.75056.d8     Document Type: Article
Times cited : (208)

References (43)
  • 1
    • 0002914202 scopus 로고    scopus 로고
    • Full information estimation in the presence of incomplete data
    • Marcoulides GA, Schumacker RE, eds. Mahwah, NJ: Lawrence Erlbaum Publishers
    • Arbuckle JL. Full information estimation in the presence of incomplete data. In: Marcoulides GA, Schumacker RE, eds. Advanced Structural Equation Modeling. Mahwah, NJ: Lawrence Erlbaum Publishers; 1996:243-77.
    • (1996) Advanced Structural Equation Modeling , pp. 243-277
    • Arbuckle, J.L.1
  • 2
    • 0035756118 scopus 로고    scopus 로고
    • The impact of nonnormality on full information maximum likelihood estimation for structural equation models with missing data
    • Enders CK. The impact of nonnormality on full information maximum likelihood estimation for structural equation models with missing data. Psychol Methods 2001;6:352-70.
    • (2001) Psychol Methods , vol.6 , pp. 352-370
    • Enders, C.K.1
  • 3
    • 0142073292 scopus 로고    scopus 로고
    • Using the EM algorithm to estimate coefficient alpha for scales with item level missing data
    • Enders CK. Using the EM algorithm to estimate coefficient alpha for scales with item level missing data. Psychol Methods 2003;8:322-37.
    • (2003) Psychol Methods , vol.8 , pp. 322-337
    • Enders, C.K.1
  • 4
    • 0000885702 scopus 로고    scopus 로고
    • The relative performance of full information maximum likelihood estimation for missing data in structural equation models
    • Enders CK, Bandalos DL. The relative performance of full information maximum likelihood estimation for missing data in structural equation models. Structural Equation Modeling 2001;8:430-57.
    • (2001) Structural Equation Modeling , vol.8 , pp. 430-457
    • Enders, C.K.1    Bandalos, D.L.2
  • 5
    • 0000497010 scopus 로고    scopus 로고
    • Treatments of missing data: A Monte Carlo comparison of RBHDI, iterative stochastic regression imputation, and expectation-maximization
    • Gold MS, Bentler PM. Treatments of missing data: a Monte Carlo comparison of RBHDI, iterative stochastic regression imputation, and expectation- maximization. Structural Equation Modeling 2000;7:319-55.
    • (2000) Structural Equation Modeling , vol.7 , pp. 319-355
    • Gold, M.S.1    Bentler, P.M.2
  • 6
    • 0030527014 scopus 로고    scopus 로고
    • Maximizing the usefulness of data obtained with planned missing value patterns: An application of maximum likelihood procedures
    • Graham JW, Hofer SM, MacKinnon DP. Maximizing the usefulness of data obtained with planned missing value patterns: an application of maximum likelihood procedures. Multivariate Behav Res 1996;31:197-218.
    • (1996) Multivariate Behav Res , vol.31 , pp. 197-218
    • Graham, J.W.1    Hofer, S.M.2    MacKinnon, D.P.3
  • 7
    • 0003245614 scopus 로고    scopus 로고
    • On the performance of multiple imputation for multivariate data with small sample size
    • Hoyle RH, ed. Thousand Oaks, CA: Sage
    • Graham JW, Schafer JL. On the performance of multiple imputation for multivariate data with small sample size. In: Hoyle RH, ed. Statistical Strategies for Small Sample Research. Thousand Oaks, CA: Sage; 1999:1-29.
    • (1999) Statistical Strategies for Small Sample Research , pp. 1-29
    • Graham, J.W.1    Schafer, J.L.2
  • 8
    • 0001010853 scopus 로고
    • On structural equation modeling with data that are not missing completely at random
    • Muthén B, Kaplan D, Hollis M. On structural equation modeling with data that are not missing completely at random. Psychometrika 1987;52:431-62.
    • (1987) Psychometrika , vol.52 , pp. 431-462
    • Muthén, B.1    Kaplan, D.2    Hollis, M.3
  • 9
    • 21844489278 scopus 로고
    • The impact of BIB spiraling-induced missing data patterns on goodness-of-fit tests in factor analysis
    • Kaplan D. The impact of BIB spiraling-induced missing data patterns on goodness-of-fit tests in factor analysis. J Educ Behav Stat 1995;20:69-82.
    • (1995) J Educ Behav Stat , vol.20 , pp. 69-82
    • Kaplan, D.1
  • 11
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods 2002;7:147-77.
    • (2002) Psychol Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 12
    • 1842548441 scopus 로고    scopus 로고
    • Finding a solution for missing data
    • Azar B. Finding a solution for missing data. Monit Psychol 2002;33:70.
    • (2002) Monit Psychol , vol.33 , pp. 70
    • Azar, B.1
  • 13
    • 12744272198 scopus 로고    scopus 로고
    • Missing data in educational research: A review of reporting practices and suggestions for improvement
    • Peugh JL, Enders CK. Missing data in educational research: a review of reporting practices and suggestions for improvement. Rev Educ Res 2004;74:525-56.
    • (2004) Rev Educ Res , vol.74 , pp. 525-556
    • Peugh, J.L.1    Enders, C.K.2
  • 14
    • 25144472336 scopus 로고    scopus 로고
    • Are missing outcome data adequately handled? A review of published randomized controlled trials in major medical journals
    • Wood AM, White IR, Thompson SG. Are missing outcome data adequately handled? a review of published randomized controlled trials in major medical journals. Clin Trials 2004;1:368-76.
    • (2004) Clin Trials , vol.1 , pp. 368-376
    • Wood, A.M.1    White, I.R.2    Thompson, S.G.3
  • 15
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB. Inference and missing data. Biometrika 1976;63:581-92.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 16
    • 0035755636 scopus 로고    scopus 로고
    • A comparison of inclusive and restrictive strategies in modern missing data procedures
    • Collins LM, Schafer JL, Kam C-H. A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychol Methods 2001;6:330-51.
    • (2001) Psychol Methods , vol.6 , pp. 330-351
    • Collins, L.M.1    Schafer, J.L.2    Kam, C.-H.3
  • 18
    • 2142647296 scopus 로고    scopus 로고
    • What do we do with missing data? Some options for analysis of incomplete data
    • Raghunathan TE. What do we do with missing data? Some options for analysis of incomplete data. Annu Rev Public Health 2004;25:99-117.
    • (2004) Annu Rev Public Health , vol.25 , pp. 99-117
    • Raghunathan, T.E.1
  • 20
    • 4243828610 scopus 로고
    • Informative dropout in longitudinal data analysis
    • Diggle PJ, Kenward MG. Informative dropout in longitudinal data analysis (with discussion). Appl Stat 1994;43:49-73.
    • (1994) Appl Stat , vol.43 , pp. 49-73
    • Diggle, P.J.1    Kenward, M.G.2
  • 21
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • Little RJA. Pattern-mixture models for multivariate incomplete data. J Am Stat Assoc 1993;88:125-34.
    • (1993) J Am Stat Assoc , vol.88 , pp. 125-134
    • Little, R.J.A.1
  • 22
    • 0242436685 scopus 로고    scopus 로고
    • Should imputation of missing data condition on all observed variables?
    • American Statistical Association
    • Little RJA, Raghunathan T. Should imputation of missing data condition on all observed variables? Proceedings of the Section on Survey Research Methods. American Statistical Association; 1997:617-22.
    • (1997) Proceedings of the Section on Survey Research Methods , pp. 617-622
    • Little, R.J.A.1    Raghunathan, T.2
  • 23
    • 0038973680 scopus 로고    scopus 로고
    • A multiple imputation analysis of a case-control study of the risk of primary cardiac arrest among pharmacologically treated hypertensive
    • Raghunathan TE, Siscovick DS. A multiple imputation analysis of a case-control study of the risk of primary cardiac arrest among pharmacologically treated hypertensive. Appl Stat 1996;45:335-52.
    • (1996) Appl Stat , vol.45 , pp. 335-352
    • Raghunathan, T.E.1    Siscovick, D.S.2
  • 25
    • 4444283472 scopus 로고    scopus 로고
    • Marginal analysis of incomplete longitudinal binary data: A cautionary note on LOCF imputation
    • Cook RJ, Zeng L, Yi GY. Marginal analysis of incomplete longitudinal binary data: a cautionary note on LOCF imputation. Biometrics 2004;60:820-8.
    • (2004) Biometrics , vol.60 , pp. 820-828
    • Cook, R.J.1    Zeng, L.2    Yi, G.Y.3
  • 28
    • 33645862952 scopus 로고    scopus 로고
    • Estimation by maximum likelihood
    • Everitt B, Howell DC, eds. West Sussex, UK: Wiley
    • Enders CK. Estimation by maximum likelihood. In: Everitt B, Howell DC, eds. Encyclopedia of Behavioral Statistics. West Sussex, UK: Wiley; 2005:1164-70.
    • (2005) Encyclopedia of Behavioral Statistics , pp. 1164-1170
    • Enders, C.K.1
  • 30
    • 0347249765 scopus 로고    scopus 로고
    • Adding missing-data relevant variables to FIML-based structural equation models
    • Graham JW. Adding missing-data relevant variables to FIML-based structural equation models. Structural Equation Modeling 2003;10:80-100.
    • (2003) Structural Equation Modeling , vol.10 , pp. 80-100
    • Graham, J.W.1
  • 31
    • 84936853890 scopus 로고
    • A test of missing completely at random for multivariate data with missing values
    • Little RJA. A test of missing completely at random for multivariate data with missing values. J Am Stat Assoc 1988;83:1198-1202.
    • (1988) J Am Stat Assoc , vol.83 , pp. 1198-1202
    • Little, R.J.A.1
  • 33
    • 0345734935 scopus 로고    scopus 로고
    • Likelihood based frequentist inference when data are missing at random
    • Kenward MG, Molenberghs G. Likelihood based frequentist inference when data are missing at random. Stat Sci 1998;13:236-47.
    • (1998) Stat Sci , vol.13 , pp. 236-247
    • Kenward, M.G.1    Molenberghs, G.2
  • 34
    • 0034555721 scopus 로고    scopus 로고
    • Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data
    • Becker M, Sobel M, eds. Malden, MA: Blackwell
    • Yuan K-H, Bentler PM. Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. In: Becker M, Sobel M, eds. Sociological Methodology 2000. Malden, MA: Blackwell; 2000:165-200.
    • (2000) Sociological Methodology 2000 , pp. 165-200
    • Yuan, K.-H.1    Bentler, P.M.2
  • 35
    • 0036400704 scopus 로고    scopus 로고
    • Applying the Bollen-Stine bootstrap for goodness-of-fit measures to structural equation models with missing data
    • Enders CK. Applying the Bollen-Stine bootstrap for goodness-of-fit measures to structural equation models with missing data. Multivariate Behav Res 2002;37:359-77.
    • (2002) Multivariate Behav Res , vol.37 , pp. 359-377
    • Enders, C.K.1
  • 36
    • 32944463452 scopus 로고    scopus 로고
    • A SAS macro for implementing the modified Bollen-Stine bootstrap for missing data: Implementing the bootstrap using existing structural equation modeling software
    • Enders CK. A SAS macro for implementing the modified Bollen-Stine bootstrap for missing data: implementing the bootstrap using existing structural equation modeling software. Structural Equation Modeling 2005;12:620-41.
    • (2005) Structural Equation Modeling , vol.12 , pp. 620-641
    • Enders, C.K.1
  • 38
    • 0034339545 scopus 로고    scopus 로고
    • Multiple imputation for missing data: A cautionary tale
    • Allison PD. Multiple imputation for missing data: a cautionary tale. Sociol Methods Res 2000;28:301-9.
    • (2000) Sociol Methods Res , vol.28 , pp. 301-309
    • Allison, P.D.1
  • 40
    • 0000265107 scopus 로고
    • Large-sample significance levels from multiple-imputed data using moment-based statistics and an F reference distribution
    • Li KH, Raghunathan TE, Rubin DB. Large-sample significance levels from multiple-imputed data using moment-based statistics and an F reference distribution. J Am Stat Assoc 1991;86:1065-73.
    • (1991) J Am Stat Assoc , vol.86 , pp. 1065-1073
    • Li, K.H.1    Raghunathan, T.E.2    Rubin, D.B.3
  • 41
    • 2442736478 scopus 로고    scopus 로고
    • Small-sample degrees of freedom with multiple imputation
    • Barnard J, Rubin DB. Small-sample degrees of freedom with multiple imputation. Biometrika 1999;86:948-55.
    • (1999) Biometrika , vol.86 , pp. 948-955
    • Barnard, J.1    Rubin, D.B.2
  • 42
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing data problems: A data analyst's perspective
    • Schafer JL, Olsen MK. Multiple imputation for multivariate missing data problems: a data analyst's perspective. Multivariate Behav Res 1998;33:545-71.
    • (1998) Multivariate Behav Res , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.