메뉴 건너뛰기




Volumn 6, Issue , 2000, Pages 3418-3421

Dynamic subgrouping in RTRL provides a faster O(N2) algorithm

Author keywords

[No Author keywords available]

Indexed keywords

ELECTRICAL ENGINEERING; APPROXIMATION THEORY; BACKPROPAGATION; COMPUTATIONAL COMPLEXITY; ESTIMATION; GREEN'S FUNCTION; ITERATIVE METHODS; LEARNING ALGORITHMS; MATRIX ALGEBRA; NONLINEAR SYSTEMS; REAL TIME SYSTEMS; SENSITIVITY ANALYSIS; SET THEORY;

EID: 0033678386     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2000.860135     Document Type: Conference Paper
Times cited : (9)

References (13)
  • 3
    • 0026117466 scopus 로고
    • Gradient methods for the optimization of dynamical systems using neural nets
    • Narendra and Parthasarathy (1991) Gradient methods for the optimization of dynamical systems using neural nets, IEEE Trans. Neural Net, vol2, #2, 252-262.
    • (1991) IEEE Trans. Neural Net , vol.2 , Issue.2 , pp. 252-262
    • Narendra1    Parthasarathy2
  • 4
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: A survey
    • Pearlmutter, B. (1995) Gradient Calculations for Dynamic Recurrent Neural Networks: A Survey. IEEE Trans. Neural Networks, Vol. 6, No 3, pp. 1212-1228.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.3 , pp. 1212-1228
    • Pearlmutter, B.1
  • 5
    • 0028401031 scopus 로고
    • NeuroControl of nonlinear systems with Kaiman filter trained recurrent networks
    • Puskorius G., Feldkamp L. (1994) NeuroControl of nonlinear systems with Kaiman filter trained recurrent networks, IEEE Trans. Neural Net., vol 5, #2, 279-297.
    • (1994) IEEE Trans. Neural Net. , vol.5 , Issue.2 , pp. 279-297
    • Puskorius, G.1    Feldkamp, L.2
  • 6
    • 0028757163 scopus 로고
    • Truncated backpropagation through time and Kaiman filter training for neurocontrol
    • Puskorius G., Feldkamp L (1994) Truncated backpropagation through time and Kaiman filter training for neurocontrol, Int. J. Conf. Neural Nets, vol 4 2488-2493.
    • (1994) Int. J. Conf. Neural Nets , vol.4 , pp. 2488-2493
    • Puskorius, G.1    Feldkamp, L.2
  • 7
    • 0000053463 scopus 로고
    • A fixed size storage 0 (n3) time complexity learning algorithm for fully recurrent continually running networks
    • Schmidhuber, J. (1992) A Fixed Size Storage 0 (n3) Time Complexity Learning Algorithm for Fully Recurrent Continually Running Networks. Neural Computation 4, pp. 243-248.
    • (1992) Neural Computation , vol.4 , pp. 243-248
    • Schmidhuber, J.1
  • 8
    • 0000651310 scopus 로고
    • Green's function method for fast on-line learning algorithm of recurrent neural networks
    • Sun, G. Z, Chen, H. H. & Lee, Y. C. (1992) Green's Function Method for Fast On-line Learning Algorithm of Recurrent Neural Networks. In NIPS 4, pp. 333-340.
    • (1992) NIPS , vol.4 , pp. 333-340
    • Sun, G.Z.1    Chen, H.H.2    Lee, Y.C.3
  • 9
    • 0025503558 scopus 로고
    • Backpropagation through time: What it does and how to do it
    • Werbos, P. (1990) Backpropagation through time: what it does and how to do it, Proc. IEEE 78, 1550-1560.
    • (1990) Proc. IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.1
  • 10
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • Williams, R. J. & Peng, J. (1990) An Efficient Gradient-Based Algorithm for On-Line Training of Recurrent Network Trajectories. Neural Computation 1, pp. 490-501.
    • (1990) Neural Computation , vol.1 , pp. 490-501
    • Williams, R.J.1    Peng, J.2
  • 11
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R. J. & Zipser, D. (1989) A learning Algorithm for Continually Running Fully Recurrent Neural Networks. In Neural Computation, Number 1, pp. 270-280.
    • (1989) Neural Computation , Issue.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 12
    • 0012061123 scopus 로고
    • A subgrouping strategy that reduces complexity and speeds up learning in recurrent networks
    • Zipser, D. (1989) A Subgrouping Strategy that Reduces Complexity and Speeds Up Learning in Recurrent Networks. Neural Computation 1, pp. 552-558.
    • (1989) Neural Computation , vol.1 , pp. 552-558
    • Zipser, D.1
  • 13
    • 0037700575 scopus 로고
    • Subgrouping reduces complexity and speeds up learning in recurrent networks
    • Zipser, D. (1990) Subgrouping Reduces Complexity and Speeds up Learning in Recurrent Networks. In NIPS 2, pp. 638-641.
    • (1990) NIPS , vol.2 , pp. 638-641
    • Zipser, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.