메뉴 건너뛰기




Volumn , Issue , 2007, Pages 119-126

A scalable model-free recurrent neural network framework for solving POMDPs

Author keywords

Constraint optimization; Real lime recurrent learning (RTRL); Recurrent neural networks

Indexed keywords

APPROXIMATION THEORY; COMPUTER SIMULATION; FUNCTION EVALUATION; LEARNING ALGORITHMS; PROBLEM SOLVING; SCALABILITY;

EID: 34548774723     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ADPRL.2007.368178     Document Type: Conference Paper
Times cited : (6)

References (20)
  • 1
    • 34748822254 scopus 로고    scopus 로고
    • TRTRL; a localized resource-efficient learning algorithm for recurrent neural networks
    • August, puerto Rica
    • D. Budik and I. Elhanany, "TRTRL; a localized resource-efficient learning algorithm for recurrent neural networks," in IEEE Midwest Symposium on Circuits, and Systems (MWSCAS), August 2006, puerto Rica.
    • (2006) IEEE Midwest Symposium on Circuits, and Systems (MWSCAS)
    • Budik, D.1    Elhanany, I.2
  • 4
    • 0003578240 scopus 로고
    • An empirical study of learning speed in backpropagation networks
    • S. E. Fahlman, "An empirical study of learning speed in backpropagation networks," Computer Science Technical Report, 1988.
    • (1988) Computer Science Technical Report
    • Fahlman, S.E.1
  • 7
    • 0003698024 scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • Tech. Rep. UCSC-CRL-94-16
    • J. Kivinen and M. Warmuth, "Exponentiated gradient versus gradient descent for linear predictors," Tech. Rep. UCSC-CRL-94-16, 1994.
    • (1994)
    • Kivinen, J.1    Warmuth, M.2
  • 10
    • 0033209687 scopus 로고    scopus 로고
    • Improving the convergence of the backpropagation algorithm using learning rate adaptation methods
    • G. D. Magoulas, M. N. Vrahatis, and G. S. Androulakis, "Improving the convergence of the backpropagation algorithm using learning rate adaptation methods," Neural Computation, vol. 11, no. 7, pp. 1769-1796, 1999.
    • (1999) Neural Computation , vol.11 , Issue.7 , pp. 1769-1796
    • Magoulas, G.D.1    Vrahatis, M.N.2    Androulakis, G.S.3
  • 11
    • 0025418210 scopus 로고
    • Neural networks for self-learning control system
    • April
    • D. Nguyen and B. Widrow. "Neural networks for self-learning control system," IEEE Cont. Sys, vol. 10, no. 4, pp. 18-23, April 1990.
    • (1990) IEEE Cont. Sys , vol.10 , Issue.4 , pp. 18-23
    • Nguyen, D.1    Widrow, B.2
  • 12
    • 0000255539 scopus 로고
    • Fast exact multiplication by the Hessian
    • B. A. Pearlmutter, "Fast exact multiplication by the Hessian," Neural Computation, vol. 6, no. 1, pp. 147-160, 1994.
    • (1994) Neural Computation , vol.6 , Issue.1 , pp. 147-160
    • Pearlmutter, B.A.1
  • 13
    • 0000053463 scopus 로고
    • 3) time complexity learning algorithm for fully recurrent continually running networks
    • 3) time complexity learning algorithm for fully recurrent continually running networks," Neural Computation, vol. 4, pp. 243-248, 1992.
    • (1992) Neural Computation , vol.4 , pp. 243-248
    • Schmidhuber, J.1
  • 14
    • 52149116388 scopus 로고    scopus 로고
    • Fast online policy gradient learning with smd gain vector, adaptation
    • Y. Weiss. B. Schölkopf, and J. Platt, Eds. Cambridge, MA: MIT Press
    • N. Schraudolph, J. Yu, and D. Aberdeen, "Fast online policy gradient learning with smd gain vector, adaptation," in Advances in Neural Information Processing Systems 18, Y. Weiss. B. Schölkopf, and J. Platt, Eds. Cambridge,' MA: MIT Press, 2006, pp. 1185-1192.
    • (2006) Advances in Neural Information Processing Systems 18 , pp. 1185-1192
    • Schraudolph, N.1    Yu, J.2    Aberdeen, D.3
  • 15
    • 0011766779 scopus 로고    scopus 로고
    • Local gain adaptation in stochastic gradient descent
    • Tech. Rep. IDSIA-09-99, Aug
    • N. N. Schraudolph, "Local gain adaptation in stochastic gradient descent," Tech. Rep. IDSIA-09-99, Aug 1999.
    • (1999)
    • Schraudolph, N.N.1
  • 17
    • 0000651310 scopus 로고
    • Green's (unction method for fast on-line learning algorithm of recurrent neural networks
    • G -Z. Sun, H.-H. Chen, and Y-C. Lee, "Green's (unction method for fast on-line learning algorithm of recurrent neural networks." in NIPS, 1991, pp. 333-340.
    • (1991) NIPS , pp. 333-340
    • Sun, G.-Z.1    Chen, H.-H.2    Lee, Y.-C.3
  • 18
    • 0025593679 scopus 로고
    • Supersab: Fast adaptive backpropagation with good scaling properties
    • T. tollenaere, "Supersab: fast adaptive backpropagation with good scaling properties," Neural Networks, vol. 3, no. 5, pp. 561-573, 1990.
    • (1990) Neural Networks , vol.3 , Issue.5 , pp. 561-573
    • tollenaere, T.1
  • 19
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Computation, no. 1, pp. 270-280, 1989.
    • (1989) Neural Computation , Issue.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 20
    • 0012061123 scopus 로고
    • A subgrouping strategy that reduces complexity and speeds up learning in recurrent networks
    • D. Zipser. "A subgrouping strategy that reduces complexity and speeds up learning in recurrent networks," Neural Computation, no. 1, pp. 552-558, 1989.
    • (1989) Neural Computation , Issue.1 , pp. 552-558
    • Zipser, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.