-
6
-
-
0042377463
-
-
A. Wallraff, A. Lukashenko, C. Coqui, A. Kemp, T. Duty, and A. V. Ustinov: Rev. Sci. Instrum. 74 (2003) 3740.
-
(2003)
Rev. Sci. Instrum
, vol.74
, pp. 3740
-
-
Wallraff, A.1
Lukashenko, A.2
Coqui, C.3
Kemp, A.4
Duty, T.5
Ustinov, A.V.6
-
7
-
-
0037012882
-
-
Y. Yu, S. Han, X. Chu, S.-I. Chu, and Z. Wang: Science 296 (2002) 889.
-
(2002)
Science
, vol.296
, pp. 889
-
-
Yu, Y.1
Han, S.2
Chu, X.3
Chu, S.-I.4
Wang, Z.5
-
12
-
-
18244392690
-
-
T. Bauch, F. Lombardi, F. Tafuri, A. Barone, G. Rotoli, P. Delsing, and T. Claeson: Phys. Rev. Lett. 94 (2005) 087003.
-
(2005)
Phys. Rev. Lett
, vol.94
, pp. 087003
-
-
Bauch, T.1
Lombardi, F.2
Tafuri, F.3
Barone, A.4
Rotoli, G.5
Delsing, P.6
Claeson, T.7
-
13
-
-
30344435608
-
-
T. Bauch, T. Lindström, F. Tafuri, G. Rotoli, P. Delsing, T. Claeson, and F. Lomvardi: Science 311 (2006) 57.
-
(2006)
Science
, vol.311
, pp. 57
-
-
Bauch, T.1
Lindström, T.2
Tafuri, F.3
Rotoli, G.4
Delsing, P.5
Claeson, T.6
Lomvardi, F.7
-
14
-
-
27144558298
-
-
K. Inomata, S. Sato, K. Nakajima, A. Tanaka, Y. Takano, H. B. Wang, M. Nagao, H. Hatano, and S. Kawabata: Phys. Rev. Lett. 95 (2005) 107005.
-
(2005)
Phys. Rev. Lett
, vol.95
, pp. 107005
-
-
Inomata, K.1
Sato, S.2
Nakajima, K.3
Tanaka, A.4
Takano, Y.5
Wang, H.B.6
Nagao, M.7
Hatano, H.8
Kawabata, S.9
-
15
-
-
33646377406
-
-
X. Y. Jin, J. Lisenfeld, Y. Koval, A. Lukashenko, A. V. Ustinov, and P. Müller: Phys. Rev. Lett. 96 (2006) 177003.
-
(2006)
Phys. Rev. Lett
, vol.96
, pp. 177003
-
-
Jin, X.Y.1
Lisenfeld, J.2
Koval, Y.3
Lukashenko, A.4
Ustinov, A.V.5
Müller, P.6
-
22
-
-
19744383380
-
-
H. B. Wang, T. Hatano, T. Yamashita, P. H. Wu, and P. Müller: Appl. Phys. Lett. 86 (2005) 023504.
-
(2005)
Appl. Phys. Lett
, vol.86
, pp. 023504
-
-
Wang, H.B.1
Hatano, T.2
Yamashita, T.3
Wu, P.H.4
Müller, P.5
-
24
-
-
0041754513
-
-
The switching properties of the second switching has been treated only in a few papers thus far; N. Mros, V. M. Krasnov, A. Yurgens, D. Winkler, and T. Claeson: Phys. Rev. B 57 (1998) R8135;
-
The switching properties of the second switching has been treated only in a few papers thus far; N. Mros, V. M. Krasnov, A. Yurgens, D. Winkler, and T. Claeson: Phys. Rev. B 57 (1998) R8135;
-
-
-
-
25
-
-
0000681926
-
-
V. M. Krasnov, V. A. Oboznov, V. V. Ryazanov, N. Mros, A. Yurgens, and D. Winkler: Phys. Rev. B 61 (2000) 766;
-
(2000)
Phys. Rev. B
, vol.61
, pp. 766
-
-
Krasnov, V.M.1
Oboznov, V.A.2
Ryazanov, V.V.3
Mros, N.4
Yurgens, A.5
Winkler, D.6
-
26
-
-
2442695656
-
-
P. A. Warburton, A. R. Kuzhakhmetov, O. S. Chana, G. Burnell, M. G. Blamire, H. Schneidewind, Y. Koval, A. Franz, P. Müller, D. M. C. Hyland, D. Dew-Hughes, H. Wu, and C. R. M. Grovenor: J. Appl. Phys. 95 (2004) 4941.
-
(2004)
J. Appl. Phys
, vol.95
, pp. 4941
-
-
Warburton, P.A.1
Kuzhakhmetov, A.R.2
Chana, O.S.3
Burnell, G.4
Blamire, M.G.5
Schneidewind, H.6
Koval, Y.7
Franz, A.8
Müller, P.9
Hyland, D.M.C.10
Dew-Hughes, D.11
Wu, H.12
Grovenor, C.R.M.13
-
32
-
-
54349086297
-
-
When finite coupling exists between the junctions in the stack, the dynamics of each junction is modified from that of an isolated junction. The junction parameters used in the present analysis should not be those for an isolated JJs but for modified JJs with the effect of coupling taken into account. As described in the text, an analogy is found in a weakly coupled two-coordinate oscillator model. When we assume two identical oscillators, the normal modes of the coupled oscillators exhibit a so-called bonding antibonding splitting. In such a situation, the variation in coupling interaction strength yields contradicting dependences on the frequency of the two modes, that is, the frequency of a normal mode increases, while the frequency of the other normal mode decreases with increasing coupling interaction strength. This model may intuitively explain the increasing Ic1 with decreasing Ic2 when the temperature is increased, as shown in Fig
-
c2 when the temperature is increased, as shown in Fig. 6. However, this explanation is oversimplified because the present stack includes seven junctions; thus, the coupling of the modes exhibits a more complex behavior. Also the origin of the temperature dependence of coupling interaction strength is unclear at present.
-
-
-
-
34
-
-
0347193736
-
-
P. Hänggi, P. Talkner, and Borkovec: Rev. Mod. Phys. 62 (1990) 251.
-
P. Hänggi, P. Talkner, and Borkovec: Rev. Mod. Phys. 62 (1990) 251.
-
-
-
-
37
-
-
33750926031
-
-
A. J. Leggett, S. Chakravatry, A. T. Dorsey, M. P. A. Fisher, A. Grag, and W. Zweger: Rev. Mod. Phys. 59 (1987) 1.
-
(1987)
Rev. Mod. Phys
, vol.59
, pp. 1
-
-
Leggett, A.J.1
Chakravatry, S.2
Dorsey, A.T.3
Fisher, M.P.A.4
Grag, A.5
Zweger, W.6
-
44
-
-
33947686751
-
-
T. Matsumoto, H. Kashiwaya, H. Shibata, S. Kashiwaya, S. Kawabata, H. Eisaki, Y. Yoshida, and Y. Tanaka: Supercond. Sci. Technol. 20 (2007) S10.
-
(2007)
Supercond. Sci. Technol
, vol.20
-
-
Matsumoto, T.1
Kashiwaya, H.2
Shibata, H.3
Kashiwaya, S.4
Kawabata, S.5
Eisaki, H.6
Yoshida, Y.7
Tanaka, Y.8
-
45
-
-
0000413175
-
-
W. Walkenhorst, G. Hechtfischer, S. Schlötzer, R. Kleiner, and P. Müller: Phys. Rev. B 56 (1997) 8396.
-
(1997)
Phys. Rev. B
, vol.56
, pp. 8396
-
-
Walkenhorst, W.1
Hechtfischer, G.2
Schlötzer, S.3
Kleiner, R.4
Müller, P.5
-
46
-
-
33947115871
-
-
H. Kashiwaya, T. Matsumoto, H. Shibata, K. Tani, and S. Kashiwaya: IEICE Trans. Electron. E90-C (2007) 605.
-
(2007)
IEICE Trans. Electron
, vol.E90-C
, pp. 605
-
-
Kashiwaya, H.1
Matsumoto, T.2
Shibata, H.3
Tani, K.4
Kashiwaya, S.5
-
47
-
-
54349085808
-
-
Because the present junction was unstable in thermal cycling even up to 100K (just above Tc, the same junction condition could not be reproduced once the trapping occurred. Thus, no magnetic field modulation experiments were performed on the present junction. We confirmed, however, that the noise amplitude (less than 10 nA in 1-10 MHz) evaluated for the present electric circuit was small enough to detect the saturated σ(I) of ∼51 nA
-
c), the same junction condition could not be reproduced once the trapping occurred. Thus, no magnetic field modulation experiments were performed on the present junction. We confirmed, however, that the noise amplitude (less than 10 nA in 1-10 MHz) evaluated for the present electric circuit was small enough to detect the saturated σ(I) of ∼51 nA.
-
-
-
-
48
-
-
3743118104
-
-
P. Silvestrini, S. Pagano, R. Cristiano, O. Liengme, and K. E. Gray: Phys. Rev. Lett. 60 (1988) 844.
-
(1988)
Phys. Rev. Lett
, vol.60
, pp. 844
-
-
Silvestrini, P.1
Pagano, S.2
Cristiano, R.3
Liengme, O.4
Gray, K.E.5
-
50
-
-
54349103227
-
-
2 has been suggested for Bi2212 estimated from the gradient of the I-V characteristics in ref. 14.
-
2 has been suggested for Bi2212 estimated from the gradient of the I-V characteristics in ref. 14.
-
-
-
-
51
-
-
50349092944
-
-
H. Kashiwaya, T. Matsumoto, S. Kashiwaya, H. Shibata, H. Eisaki, Y. Yoshida, S. Kawabata, and Y. Tanaka: Physica C 468 (2008) 1919.
-
(2008)
Physica C
, vol.468
, pp. 1919
-
-
Kashiwaya, H.1
Matsumoto, T.2
Kashiwaya, S.3
Shibata, H.4
Eisaki, H.5
Yoshida, Y.6
Kawabata, S.7
Tanaka, Y.8
-
52
-
-
14544303657
-
-
R. McDermott, R. W. Simmonds, M. Steffen, K. B. Cooper, K. Cicak, K. D. Osborn, S. Oh, D. P. Pappas, and J. M. Martinis: Science 307 (2005) 1299.
-
(2005)
Science
, vol.307
, pp. 1299
-
-
McDermott, R.1
Simmonds, R.W.2
Steffen, M.3
Cooper, K.B.4
Cicak, K.5
Osborn, K.D.6
Oh, S.7
Pappas, D.P.8
Martinis, J.M.9
-
53
-
-
0038242848
-
-
A. J. Berkley, H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, and F. C. Wellstood: Science 300 (2003) 1548.
-
(2003)
Science
, vol.300
, pp. 1548
-
-
Berkley, A.J.1
Xu, H.2
Ramos, R.C.3
Gubrud, M.A.4
Strauch, F.W.5
Johnson, P.R.6
Anderson, J.R.7
Dragt, A.J.8
Lobb, C.J.9
Wellstood, F.C.10
-
54
-
-
54349120486
-
-
c (60K in the present case).
-
c (60K in the present case).
-
-
-
-
55
-
-
0000882092
-
-
The distance between the sensor and the heat spot in ref. 21 was about 100 nm, whereas that in our case is less than 10 nm. Therefore, the estimated Rth in our case should be more than tenfold larger than that in ref. 21
-
Y. Ando, J. Takeya, Y. Abe, K. Nakamura, and A. Kapitulnik: Phys. Rev. B 62 (2000) 626. The distance between the sensor and the heat spot in ref. 21 was about 100 nm, whereas that in our case is less than 10 nm. Therefore, the estimated Rth in our case should be more than tenfold larger than that in ref. 21.
-
(2000)
Phys. Rev. B
, vol.62
, pp. 626
-
-
Ando, Y.1
Takeya, J.2
Abe, Y.3
Nakamura, K.4
Kapitulnik, A.5
-
56
-
-
6344244490
-
-
L. X. You, P. H. Wu, W. W. Xu, K. Kajiki, S. Watauchi, and I. Tanaka: Supercond. Sci. Technol. 17 (2004) 1160.
-
(2004)
Supercond. Sci. Technol
, vol.17
, pp. 1160
-
-
You, L.X.1
Wu, P.H.2
Xu, W.W.3
Kajiki, K.4
Watauchi, S.5
Tanaka, I.6
-
58
-
-
54349101222
-
-
We did not evaluate the higher-order switching properties in the present junction based on technical problems, such as the limitation of electronics (saturation of preamplifier) and the stability of the temperature. Also the order of switching tended to be unstable for higher-bias voltages, that is, the switching of A-B-C-D mixed with A-B-D-C A, B, C, D are junction in the stack, respectively, The complex switching order interrupts the evaluation of the correct switching probability distribution for higher-order switchings
-
We did not evaluate the higher-order switching properties in the present junction based on technical problems, such as the limitation of electronics (saturation of preamplifier) and the stability of the temperature. Also the order of switching tended to be unstable for higher-bias voltages, that is, the switching of A-B-C-D mixed with A-B-D-C (A, B, C, D are junction in the stack, respectively). The complex switching order interrupts the evaluation of the correct switching probability distribution for higher-order switchings.
-
-
-
-
60
-
-
54349099200
-
-
After the first switching, the firstly switched junction irradiates photons owing to the AC Josephson effect. If the second switching is influenced by these photons, the additional peak formation or peak shift due to the photon assisted tunneling effect will be expected in the switching probability distribution, such as those reported in refs. 12, 13, and 15.
-
After the first switching, the firstly switched junction irradiates photons owing to the AC Josephson effect. If the second switching is influenced by these photons, the additional peak formation or peak shift due to the photon assisted tunneling effect will be expected in the switching probability distribution, such as those reported in refs. 12, 13, and 15.
-
-
-
|