메뉴 건너뛰기




Volumn 102, Issue 4, 2008, Pages 551-559

Reductions in maize root-tip elongation by salt and osmotic stress do not correlate with apoplastic O2•- levels

Author keywords

Reactive oxygen species; Root tip growth; ROS; Salt stress; Zea mays

Indexed keywords

HYDROGEN PEROXIDE; OXYGEN; SODIUM CHLORIDE; SORBITOL; SUPEROXIDE DISMUTASE;

EID: 52449090742     PISSN: 03057364     EISSN: 10958290     Source Type: Journal    
DOI: 10.1093/aob/mcn141     Document Type: Article
Times cited : (28)

References (60)
  • 1
    • 13244295772 scopus 로고    scopus 로고
    • The suppression of salinity-associated oxygen radicals production, in pepper (Capsicum annuum) fruit, by manganese, zinc and calcium in relation to its sensitivity to blossom-end rot
    • Aktas H, Karni L, Chang DC, Turhan E, Bar-Tal A, Aloni B. 2005. The suppression of salinity-associated oxygen radicals production, in pepper (Capsicum annuum) fruit, by manganese, zinc and calcium in relation to its sensitivity to blossom-end rot. Physiologia Plantarum 123: 67-74.
    • (2005) Physiologia Plantarum , vol.123 , pp. 67-74
    • Aktas, H.1    Karni, L.2    Chang, D.C.3    Turhan, E.4    Bar-Tal, A.5    Aloni, B.6
  • 2
    • 0038672085 scopus 로고    scopus 로고
    • Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity
    • Arbona V, Flors V, Jacas J, García-Agustín P, Gómez-Cadenas A. 2003. Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant and Cell Physiology 44: 388-394.
    • (2003) Plant and Cell Physiology , vol.44 , pp. 388-394
    • Arbona, V.1    Flors, V.2    Jacas, J.3    García-Agustín, P.4    Gómez-Cadenas, A.5
  • 4
    • 0037237973 scopus 로고    scopus 로고
    • Antioxidants, oxidative damage and oxygen deprivation stress: A review
    • Blokhina O, Virolainen E, Fagerstedt KV. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany 91: 179-194.
    • (2003) Annals of Botany , vol.91 , pp. 179-194
    • Blokhina, O.1    Virolainen, E.2    Fagerstedt, K.V.3
  • 5
    • 33745590665 scopus 로고    scopus 로고
    • The role of reactive oxygen species in cell growth: Lessons from root hairs
    • Carol RJ, Dolan L. 2006. The role of reactive oxygen species in cell growth: lessons from root hairs. Journal of Experimental Botany 57: 1829-1834.
    • (2006) Journal of Experimental Botany , vol.57 , pp. 1829-1834
    • Carol, R.J.1    Dolan, L.2
  • 7
    • 14544274736 scopus 로고    scopus 로고
    • Changes in intracellular and apoplastic peroxidase activity, ascorbate redox status, and root elongation induced by enhanced ascorbate content in Allium cepa L
    • Córdoba-Pedregosa MC, Villalba JM, Córdoba F, González-Reyes JA. 2005. Changes in intracellular and apoplastic peroxidase activity, ascorbate redox status, and root elongation induced by enhanced ascorbate content in Allium cepa L. Journal of Experimental Botany 56: 685-694.
    • (2005) Journal of Experimental Botany , vol.56 , pp. 685-694
    • Córdoba-Pedregosa, M.C.1    Villalba, J.M.2    Córdoba, F.3    González-Reyes, J.A.4
  • 8
    • 34447515608 scopus 로고    scopus 로고
    • Physiological roles of nonselective cation channels in plants: From salt stress to signalling and development
    • Demidchik V, Maathuis FJM. 2007. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytologist 175: 387-404.
    • (2007) New Phytologist , vol.175 , pp. 387-404
    • Demidchik, V.1    Maathuis, F.J.M.2
  • 9
    • 33947388739 scopus 로고    scopus 로고
    • Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: Possible interaction with peroxidases
    • Dunand C, Crèvecoeur M, Penel C. 2007. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytologist 174: 332-341.
    • (2007) New Phytologist , vol.174 , pp. 332-341
    • Dunand, C.1    Crèvecoeur, M.2    Penel, C.3
  • 10
    • 0006002814 scopus 로고
    • The kinematics of plant growth
    • Erickson R, Silk W. 1980. The kinematics of plant growth. Scientific American 242: 134-151.
    • (1980) Scientific American , vol.242 , pp. 134-151
    • Erickson, R.1    Silk, W.2
  • 11
    • 4444305448 scopus 로고    scopus 로고
    • The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH
    • Fan L, Neumann PM. 2004. The spatially variable inhibition by water deficit of maize root growth correlates with altered profiles of proton flux and cell wall pH. Plant Physiology 135: 2291-2300.
    • (2004) Plant Physiology , vol.135 , pp. 2291-2300
    • Fan, L.1    Neumann, P.M.2
  • 12
    • 33646847030 scopus 로고    scopus 로고
    • Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics
    • Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann PM. 2006. Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiology 140: 603-612.
    • (2006) Plant Physiology , vol.140 , pp. 603-612
    • Fan, L.1    Linker, R.2    Gepstein, S.3    Tanimoto, E.4    Yamamoto, R.5    Neumann, P.M.6
  • 14
    • 0032103424 scopus 로고    scopus 로고
    • Oxidative scission of plant cell wall polysaccharides by ascorbate induced hydroxyl radicals
    • Fry SC. 1998. Oxidative scission of plant cell wall polysaccharides by ascorbate induced hydroxyl radicals. Biochemical Journal 332: 505-515.
    • (1998) Biochemical Journal , vol.332 , pp. 505-515
    • Fry, S.C.1
  • 15
    • 1042278607 scopus 로고    scopus 로고
    • Primary cell wall metabolism: Tracking the careers of wall polymers in living plant cells
    • Fry SC. 2004. Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytologist 161: 641-675.
    • (2004) New Phytologist , vol.161 , pp. 641-675
    • Fry, S.C.1
  • 16
    • 33745654570 scopus 로고    scopus 로고
    • Control of plant development by reactive oxygen species
    • Gapper C, Dolan L. 2006. Control of plant development by reactive oxygen species. Plant Physiology 141: 341-345.
    • (2006) Plant Physiology , vol.141 , pp. 341-345
    • Gapper, C.1    Dolan, L.2
  • 17
    • 4544288944 scopus 로고    scopus 로고
    • Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals
    • Henzler T, Ye Q, Steudle E. 2004. Oxidative gating of water channels (aquaporins) in Chara by hydroxyl radicals. Plant Cell and Environment 27: 1184-1195.
    • (2004) Plant Cell and Environment , vol.27 , pp. 1184-1195
    • Henzler, T.1    Ye, Q.2    Steudle, E.3
  • 21
    • 0034960311 scopus 로고    scopus 로고
    • Role of auxin-induced reactive oxygen species in root gravitropism
    • Jon JH, Bae YS, Lee JS. 2001. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiology 126: 1055-1060.
    • (2001) Plant Physiology , vol.126 , pp. 1055-1060
    • Jon, J.H.1    Bae, Y.S.2    Lee, J.S.3
  • 22
    • 13844282123 scopus 로고    scopus 로고
    • Auxin-induced reactive oxygen species production requires the activation of phosphatidylinositol 3-kinase
    • Joo JH, Yoo HJ, Hwang I, Lee JS, Nam KH, Bae YS. 2005. Auxin-induced reactive oxygen species production requires the activation of phosphatidylinositol 3-kinase. FEBS Letters 579: 1243-1248.
    • (2005) FEBS Letters , vol.579 , pp. 1243-1248
    • Joo, J.H.1    Yoo, H.J.2    Hwang, I.3    Lee, J.S.4    Nam, K.H.5    Bae, Y.S.6
  • 23
    • 21444453940 scopus 로고    scopus 로고
    • Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis
    • Katsuhara M, Otsuka T, Ezaki B. 2005. Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Science 169: 369-373.
    • (2005) Plant Science , vol.169 , pp. 369-373
    • Katsuhara, M.1    Otsuka, T.2    Ezaki, B.3
  • 24
    • 0035175315 scopus 로고    scopus 로고
    • Cation-induced superoxide generation in tobacco cell suspension culture is dependent on ion valence
    • Kawano T, Kawano N, Muto S, Lapeyrie F. 2001. Cation-induced superoxide generation in tobacco cell suspension culture is dependent on ion valence. Plant Cell and Environment 24: 1235-1241.
    • (2001) Plant Cell and Environment , vol.24 , pp. 1235-1241
    • Kawano, T.1    Kawano, N.2    Muto, S.3    Lapeyrie, F.4
  • 26
    • 0037507299 scopus 로고    scopus 로고
    • NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis
    • Kwak JM, Mor IC, Pei Z-M, Leonhardt N, Torres MA, Dangl JL, et al. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. The EMBO Journal 22: 2623-2633.
    • (2003) The EMBO Journal , vol.22 , pp. 2623-2633
    • Kwak, J.M.1    Mor, I.C.2    Pei, Z.-M.3    Leonhardt, N.4    Torres, M.A.5    Dangl, J.L.6
  • 27
    • 34447108280 scopus 로고    scopus 로고
    • Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance
    • Leshem Y, Seri L, Levine A. 2007. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. The Plant Journal 51: 185-197.
    • (2007) The Plant Journal , vol.51 , pp. 185-197
    • Leshem, Y.1    Seri, L.2    Levine, A.3
  • 28
    • 16544393893 scopus 로고    scopus 로고
    • •) by maize roots and their role in wall loosening and elongation growth
    • •) by maize roots and their role in wall loosening and elongation growth. Plant Physiology 136: 3114-3123.
    • (2004) Plant Physiology , vol.136 , pp. 3114-3123
    • Liszkay, A.1    van der Zalm, E.2    Schopfer, P.3
  • 30
    • 0028120633 scopus 로고
    • Hardening of root cell walls: A growth inhibitory response to salinity stress
    • Neumann PM, Azaizeh H, Leon D. 1994. Hardening of root cell walls: a growth inhibitory response to salinity stress. Plant Cell and Environment 17: 303-309.
    • (1994) Plant Cell and Environment , vol.17 , pp. 303-309
    • Neumann, P.M.1    Azaizeh, H.2    Leon, D.3
  • 31
    • 0029830579 scopus 로고    scopus 로고
    • Intra- and extra cellular localization of 'cytosolic' CuZn-superoxide dismutase in spinach leaf and hypocotyl
    • Ogawa K, Kanematsu S, Asada K. 1996. Intra- and extra cellular localization of 'cytosolic' CuZn-superoxide dismutase in spinach leaf and hypocotyl. Plant and Cell Physiology 37: 790-799.
    • (1996) Plant and Cell Physiology , vol.37 , pp. 790-799
    • Ogawa, K.1    Kanematsu, S.2    Asada, K.3
  • 32
    • 33845251392 scopus 로고    scopus 로고
    • Why are Chloris gayana leaves shorter in salt-affected plants? Analyses in the elongation zone
    • Ortega L, Fry SC, Taleisnik E. 2006. Why are Chloris gayana leaves shorter in salt-affected plants? Analyses in the elongation zone. Journal of Experimental Botany 57: 3945-3952.
    • (2006) Journal of Experimental Botany , vol.57 , pp. 3945-3952
    • Ortega, L.1    Fry, S.C.2    Taleisnik, E.3
  • 34
    • 34547439837 scopus 로고    scopus 로고
    • Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species
    • Peleg-Grossman S, Volpin H, Levine A. 2007. Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species. Journal of Experimental Botany 58: 1637-1649.
    • (2007) Journal of Experimental Botany , vol.58 , pp. 1637-1649
    • Peleg-Grossman, S.1    Volpin, H.2    Levine, A.3
  • 35
    • 0041569774 scopus 로고    scopus 로고
    • Apoplastic ascorbate metabolism and its role in the regulation of cell signalling
    • Pignocchi C, Foyer CH. 2003. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. Current Opinion in Plant Biology 6: 379-389.
    • (2003) Current Opinion in Plant Biology , vol.6 , pp. 379-389
    • Pignocchi, C.1    Foyer, C.H.2
  • 36
    • 4043152113 scopus 로고    scopus 로고
    • Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress
    • Porcel R, Ruiz-Lozano JM. 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. Journal of Experimental Botany 55: 1743-1750.
    • (2004) Journal of Experimental Botany , vol.55 , pp. 1743-1750
    • Porcel, R.1    Ruiz-Lozano, J.M.2
  • 37
    • 34248374154 scopus 로고    scopus 로고
    • Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth
    • Potocky M, Jones MA, Bezvoda R, Smirnoff N, Zarsky V. 2007. Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytologist 174: 742-751.
    • (2007) New Phytologist , vol.174 , pp. 742-751
    • Potocky, M.1    Jones, M.A.2    Bezvoda, R.3    Smirnoff, N.4    Zarsky, V.5
  • 38
    • 0028154517 scopus 로고
    • The control of cell expansion in roots
    • Pritchard J. 1994. The control of cell expansion in roots. New Phytologist 127: 3-26.
    • (1994) New Phytologist , vol.127 , pp. 3-26
    • Pritchard, J.1
  • 39
    • 0000068391 scopus 로고
    • Hydrogen peroxide metabolism in soybean axes at the onset of germination
    • Puntarulo S, Sanchez R, Boveris A. 1988. Hydrogen peroxide metabolism in soybean axes at the onset of germination. Plant Physiology 86: 626-630.
    • (1988) Plant Physiology , vol.86 , pp. 626-630
    • Puntarulo, S.1    Sanchez, R.2    Boveris, A.3
  • 40
    • 0037008194 scopus 로고    scopus 로고
    • Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension
    • Rodríguez A, Grunberg K, Taleisnik E. 2002. Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiology 129: 1627-1632.
    • (2002) Plant Physiology , vol.129 , pp. 1627-1632
    • Rodríguez, A.1    Grunberg, K.2    Taleisnik, E.3
  • 41
    • 2942536057 scopus 로고    scopus 로고
    • Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity
    • Rodríguez A, Ortega L, Córdoba A, Taleisnik E. 2004. Decreased reactive oxygen species concentration in the elongation zone contributes to the reduction in maize leaf growth under salinity. Journal of Experimental Botany 53: 1383-1390.
    • (2004) Journal of Experimental Botany , vol.53 , pp. 1383-1390
    • Rodríguez, A.1    Ortega, L.2    Córdoba, A.3    Taleisnik, E.4
  • 42
    • 33846572916 scopus 로고    scopus 로고
    • Salinity-induced reductions in NADPH oxidase activity in the maize leaf blade elongation zone
    • Rodríguez A, Lascano H, Bustos L, Taleisnik E. 2007. Salinity-induced reductions in NADPH oxidase activity in the maize leaf blade elongation zone. Journal of Plant Physiology 164: 223-230.
    • (2007) Journal of Plant Physiology , vol.164 , pp. 223-230
    • Rodríguez, A.1    Lascano, H.2    Bustos, L.3    Taleisnik, E.4
  • 43
    • 33645745877 scopus 로고    scopus 로고
    • Characterization of active oxygen-producing proteins in response to hypo-osmolarity in tobacco and Arabidopsis cell suspensions: Identification of a cell wall peroxidase
    • Rouet M-A, Mathieu Y, Barbier-Brygoo H, Lauriere C. 2006. Characterization of active oxygen-producing proteins in response to hypo-osmolarity in tobacco and Arabidopsis cell suspensions: identification of a cell wall peroxidase. Journal of Experimental Botany 57: 1323-1332.
    • (2006) Journal of Experimental Botany , vol.57 , pp. 1323-1332
    • Rouet, M.-A.1    Mathieu, Y.2    Barbier-Brygoo, H.3    Lauriere, C.4
  • 44
    • 0034865344 scopus 로고    scopus 로고
    • Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis
    • Sang Y, Cui D, Wang X. 2001. Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis. Plant Physiology 126: 1449-1458.
    • (2001) Plant Physiology , vol.126 , pp. 1449-1458
    • Sang, Y.1    Cui, D.2    Wang, X.3
  • 45
    • 0035030687 scopus 로고    scopus 로고
    • Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid
    • Schopfer P, Plachy C, Frahry G. 2001. Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiology 125: 1591-1602.
    • (2001) Plant Physiology , vol.125 , pp. 1591-1602
    • Schopfer, P.1    Plachy, C.2    Frahry, G.3
  • 46
    • 0036001088 scopus 로고    scopus 로고
    • Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization
    • Schutzendubel A, Polle A. 2005. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany 53: 1351-1365.
    • (2005) Journal of Experimental Botany , vol.53 , pp. 1351-1365
    • Schutzendubel, A.1    Polle, A.2
  • 47
    • 34848909898 scopus 로고    scopus 로고
    • Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media
    • Sekmen AH, Turkan I, Takio S. 2007. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum 131: 399-411.
    • (2007) Physiologia Plantarum , vol.131 , pp. 399-411
    • Sekmen, A.H.1    Turkan, I.2    Takio, S.3
  • 48
    • 0034918132 scopus 로고    scopus 로고
    • Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system
    • Shalata A, Mittova V, Volokita M, Guy M, Tal M. 2001. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiologia Plantarum 112: 487-494.
    • (2001) Physiologia Plantarum , vol.112 , pp. 487-494
    • Shalata, A.1    Mittova, V.2    Volokita, M.3    Guy, M.4    Tal, M.5
  • 49
    • 0002072052 scopus 로고
    • Growth of the maize primary root at low water potentials. I. Spatial distribution of expansive growth
    • Sharp RE, Silk WK, Hsiao TC. 1988. Growth of the maize primary root at low water potentials. I. Spatial distribution of expansive growth. Plant Physiology 87: 50-57.
    • (1988) Plant Physiology , vol.87 , pp. 50-57
    • Sharp, R.E.1    Silk, W.K.2    Hsiao, T.C.3
  • 50
    • 24044477266 scopus 로고    scopus 로고
    • Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency
    • Shin R, Berg RH, Schachtman DP. 2005. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant and Cell Physiology 46: 1350-1357.
    • (2005) Plant and Cell Physiology , vol.46 , pp. 1350-1357
    • Shin, R.1    Berg, R.H.2    Schachtman, D.P.3
  • 51
    • 34547760410 scopus 로고    scopus 로고
    • Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation
    • Singh H, Batish D, Kohli R, Arora K. 2007. Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regulation 53: 65-73.
    • (2007) Plant Growth Regulation , vol.53 , pp. 65-73
    • Singh, H.1    Batish, D.2    Kohli, R.3    Arora, K.4
  • 52
    • 45249125699 scopus 로고
    • Hydroxyl radical scavenging activity of compatible solutes
    • Smirnoff N, Cumbes QJ. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057-1060.
    • (1989) Phytochemistry , vol.28 , pp. 1057-1060
    • Smirnoff, N.1    Cumbes, Q.J.2
  • 53
    • 2442483795 scopus 로고    scopus 로고
    • Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress
    • Sofo A, Dichio B, Xiloyannis C, Masia A. 2004. Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiologia Plantarum 121: 58-65.
    • (2004) Physiologia Plantarum , vol.121 , pp. 58-65
    • Sofo, A.1    Dichio, B.2    Xiloyannis, C.3    Masia, A.4
  • 54
    • 0000992564 scopus 로고
    • Spatial distribution of turgor and root growth at low water potentials
    • Spollen W, Sharp R. 1991. Spatial distribution of turgor and root growth at low water potentials. Plant Physiology 96: 438-443.
    • (1991) Plant Physiology , vol.96 , pp. 438-443
    • Spollen, W.1    Sharp, R.2
  • 56
    • 0030178539 scopus 로고    scopus 로고
    • Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins
    • Wu Y, Sharp RE, Durachko DM, Cosgrove DJ. 1996. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiology 111: 765-772.
    • (1996) Plant Physiology , vol.111 , pp. 765-772
    • Wu, Y.1    Sharp, R.E.2    Durachko, D.M.3    Cosgrove, D.J.4
  • 57
    • 0034870451 scopus 로고    scopus 로고
    • Modification of expansin transcript levels in the maize primary root at low water potentials
    • Wu Y, Thorne ET, Sharp RE, Cosgrove DJ. 2001. Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiology 126: 1471-1479.
    • (2001) Plant Physiology , vol.126 , pp. 1471-1479
    • Wu, Y.1    Thorne, E.T.2    Sharp, R.E.3    Cosgrove, D.J.4
  • 58
    • 0033514878 scopus 로고    scopus 로고
    • Drought and salinity differentially influence activities of superoxide dismutases in narrow-leafed lupins
    • Yu Q, Rengel Z. 1999. Drought and salinity differentially influence activities of superoxide dismutases in narrow-leafed lupins. Plant Science 142: 1-11.
    • (1999) Plant Science , vol.142 , pp. 1-11
    • Yu, Q.1    Rengel, Z.2
  • 59
    • 37249082491 scopus 로고    scopus 로고
    • Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit
    • Zhu J, Alvarez S, Marsh EL, LeNoble ME, Cho I-J, Sivaguru M, et al. 2007. Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiology 145: 1533-1548.
    • (2007) Plant Physiology , vol.145 , pp. 1533-1548
    • Zhu, J.1    Alvarez, S.2    Marsh, E.L.3    LeNoble, M.E.4    Cho, I.-J.5    Sivaguru, M.6
  • 60
    • 0002265998 scopus 로고
    • Does salinity reduce growth in maize root epidermal-cells by inhibiting their capacity for cell-wall acidification
    • Zidan I, Azaizeh H, Neumann PM. 1990. Does salinity reduce growth in maize root epidermal-cells by inhibiting their capacity for cell-wall acidification. Plant Physiology 93: 7-11.
    • (1990) Plant Physiology , vol.93 , pp. 7-11
    • Zidan, I.1    Azaizeh, H.2    Neumann, P.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.