-
2
-
-
0040405296
-
-
(a) Bowen-Katari, J. E.; Colvin, V. L.; Alivisatos, A. P. J. Phys. Chem. 1994, 98, 4109.
-
(1994)
J. Phys. Chem
, vol.98
, pp. 4109
-
-
Bowen-Katari, J.E.1
Colvin, V.L.2
Alivisatos, A.P.3
-
3
-
-
0001614792
-
-
(b) Becerra, L. R.; Murray, C. B.; Griffin, R. G.; Bawendi, M. G. J. Chem. Phys. 1994, 100, 3297-3300.
-
(1994)
J. Chem. Phys
, vol.100
, pp. 3297-3300
-
-
Becerra, L.R.1
Murray, C.B.2
Griffin, R.G.3
Bawendi, M.G.4
-
5
-
-
34249671270
-
-
(b) Wang, W.; Banerjee, S.; Jia, S.; Steigerwald, M. L.; Herman, I. P. Chem. Mater. 2007, 19, 2573-2580.
-
(2007)
Chem. Mater
, vol.19
, pp. 2573-2580
-
-
Wang, W.1
Banerjee, S.2
Jia, S.3
Steigerwald, M.L.4
Herman, I.P.5
-
6
-
-
10844219967
-
-
(a) Puzder, A.; Williamson, A. J.; Zaitseva, N.; Galli, G.; Manna, L.; Alivisatos, A. P. Nano Lett. 2004, 4, 2361-2365.
-
(2004)
Nano Lett
, vol.4
, pp. 2361-2365
-
-
Puzder, A.1
Williamson, A.J.2
Zaitseva, N.3
Galli, G.4
Manna, L.5
Alivisatos, A.P.6
-
7
-
-
17044393555
-
-
(b) Manna, L.; Wang, L. W.; Cingolani, R.; Alivisatos, A. P. J. Phys. Chem. B 2005, 109, 6183-6192.
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 6183-6192
-
-
Manna, L.1
Wang, L.W.2
Cingolani, R.3
Alivisatos, A.P.4
-
8
-
-
0000592050
-
-
(a) Kuno, M.; Lee, J. K.; Dabbousi, B. O.; Mikulec, F. V.; Bawendi, M. G. J. Chem. Phys. 1997, 106, 9869-9882.
-
(1997)
J. Chem. Phys
, vol.106
, pp. 9869-9882
-
-
Kuno, M.1
Lee, J.K.2
Dabbousi, B.O.3
Mikulec, F.V.4
Bawendi, M.G.5
-
9
-
-
0037603819
-
-
(b) Reiss, P.; Bleuse, J.; Pron, A. Nano Lett. 2002, 2, 781-784.
-
(2002)
Nano Lett
, vol.2
, pp. 781-784
-
-
Reiss, P.1
Bleuse, J.2
Pron, A.3
-
10
-
-
0037070627
-
-
(c) Wang, Y. A.; Li, J. J.; Chen, H. Y.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2293-2298.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 2293-2298
-
-
Wang, Y.A.1
Li, J.J.2
Chen, H.Y.3
Peng, X.4
-
11
-
-
0000186288
-
-
Cao, G.; Lynch, V. M.; Yacullo, L. N. Chem. Mater. 1993, 5, 1000-1006.
-
(1993)
Chem. Mater
, vol.5
, pp. 1000-1006
-
-
Cao, G.1
Lynch, V.M.2
Yacullo, L.N.3
-
12
-
-
51949108417
-
-
Assuming this resonance corresponds to the acidic hydrogen of an octadecylphosphonic acid ligand bound to the nanocrystal accounts for only one hydrogen per 11.5 ± 2% of the octadecylphosphonate moieties. Additional work is required to unequivocally assign this resonance
-
Assuming this resonance corresponds to the acidic hydrogen of an octadecylphosphonic acid ligand bound to the nanocrystal accounts for only one hydrogen per 11.5 ± 2% of the octadecylphosphonate moieties. Additional work is required to unequivocally assign this resonance.
-
-
-
-
13
-
-
33846191609
-
-
Liu, H.; Owen, J. S.; Alivisatos, A. P. J. Am. Chem. Soc. 2007, 129, 305-312.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 305-312
-
-
Liu, H.1
Owen, J.S.2
Alivisatos, A.P.3
-
14
-
-
51949111165
-
-
1/2 > 12 hr).
-
1/2 > 12 hr).
-
-
-
-
15
-
-
51949097075
-
-
The relative integrals of the methylene and methyl resonances (1:17) from the remaining aliphatic chains showed that they are composed of octadecyl chains
-
The relative integrals of the methylene and methyl resonances (1:17) from the remaining aliphatic chains showed that they are composed of octadecyl chains.
-
-
-
-
16
-
-
51949087741
-
-
Adding 8 to our nanocrystals resulted in a ∼5 nm shift of the fluorescence maximum.
-
Adding 8 to our nanocrystals resulted in a ∼5 nm shift of the fluorescence maximum.
-
-
-
-
17
-
-
51949084167
-
-
1H NMR spectroscopy. Addition of excess chlorotrimethylsilane results in etching of the CdSe particles, as evidenced by a blue-shifting of their absorption and fluorescence spectra, as well as a decrease in quantum yield of the CdSe/ZnS core-shell samples.
-
1H NMR spectroscopy. Addition of excess chlorotrimethylsilane results in etching of the CdSe particles, as evidenced by a blue-shifting of their absorption and fluorescence spectra, as well as a decrease in quantum yield of the CdSe/ZnS core-shell samples.
-
-
-
-
18
-
-
0342915293
-
-
(a) Seals, R. D.; Alexander, R.; Taylor, L. T.; Dillard, J. G. Inorg. Chem. 1973, 12, 2485-2487.
-
(1973)
Inorg. Chem
, vol.12
, pp. 2485-2487
-
-
Seals, R.D.1
Alexander, R.2
Taylor, L.T.3
Dillard, J.G.4
-
19
-
-
4243715706
-
-
(b) Escard, J.; Mavel, G.; Guerchais, J. E.; Kergoat, R. Inorg. Chem. 1974, 13, 695-701.
-
(1974)
Inorg. Chem
, vol.13
, pp. 695-701
-
-
Escard, J.1
Mavel, G.2
Guerchais, J.E.3
Kergoat, R.4
-
20
-
-
0035545155
-
-
Taylor, J.; Kippeny, T.; Rosenthal, S. J. J. Cluster Sci. 2001, 12, 571-582.
-
(2001)
J. Cluster Sci
, vol.12
, pp. 571-582
-
-
Taylor, J.1
Kippeny, T.2
Rosenthal, S.J.3
-
21
-
-
51949101781
-
-
A small concentration (<10%) of free surfactant ligands appeared upon the addition of 5, that rapidly reached equilibrium. Surprisingly, heating this sample to 100°C for 16 h made little difference to these spectra. Further experiments to probe this reaction are underway and will be reported elsewhere.
-
A small concentration (<10%) of free surfactant ligands appeared upon the addition of 5, that rapidly reached equilibrium. Surprisingly, heating this sample to 100°C for 16 h made little difference to these spectra. Further experiments to probe this reaction are underway and will be reported elsewhere.
-
-
-
-
22
-
-
51949100453
-
-
The important resonance structures of the dianionic form of octadecylphosphonic acid anhydride show that this moluecule, unlike 6, is not chiral. Similarily, its protonated form shows a single line spectrum as a result of rapid hydrogen ion exchange between the P-OH and P=O functionalities see Supporting Information, Similar chemical shifts were reported in ref 3a
-
The important resonance structures of the dianionic form of octadecylphosphonic acid anhydride show that this moluecule, unlike 6, is not chiral. Similarily, its protonated form shows a single line spectrum as a result of rapid hydrogen ion exchange between the P-OH and P=O functionalities (see Supporting Information). Similar chemical shifts were reported in ref 3a.
-
-
-
-
25
-
-
35348968910
-
-
(a) Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science 2007, 318, 430-433.
-
(2007)
Science
, vol.318
, pp. 430-433
-
-
Jadzinsky, P.D.1
Calero, G.2
Ackerson, C.J.3
Bushnell, D.A.4
Kornberg, R.D.5
-
27
-
-
41149143594
-
-
(c) Heavan, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. J. Am. Chem. Soc. 2008, 130, 3754-3755.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 3754-3755
-
-
Heavan, M.W.1
Dass, A.2
White, P.S.3
Holt, K.M.4
Murray, R.W.5
-
28
-
-
41149111848
-
-
(d) Akola, J.; Walter, M.; Whetten, R. L.; Häkkinen, H.; Grönbeck, H. J. Am. Chem. Soc. 2008, 130, 3756-3757.
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 3756-3757
-
-
Akola, J.1
Walter, M.2
Whetten, R.L.3
Häkkinen, H.4
Grönbeck, H.5
-
29
-
-
33845471493
-
-
(a) Dance, I. G.; Choy, A.; Scudder, M. L. J. Am. Chem. Soc. 1984, 106, 6285.
-
(1984)
J. Am. Chem. Soc
, vol.106
, pp. 6285
-
-
Dance, I.G.1
Choy, A.2
Scudder, M.L.3
-
30
-
-
33845280394
-
-
and references therein
-
(b) Lee, G. S. H.; Craig, D. C.; Ma, I.; Scudder, M. L.; Bailey, T. D.; Dance, I. G. J. Am. Chem. Soc. 1988, 110, 4863-4864, and references therein.
-
(1988)
J. Am. Chem. Soc
, vol.110
, pp. 4863-4864
-
-
Lee, G.S.H.1
Craig, D.C.2
Ma, I.3
Scudder, M.L.4
Bailey, T.D.5
Dance, I.G.6
|