-
4
-
-
0033693570
-
-
Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545-610.
-
(2000)
Annu. Rev. Mater. Sci.
, vol.30
, pp. 545-610
-
-
Murray, C.B.1
Kagan, C.R.2
Bawendi, M.G.3
-
5
-
-
0012392952
-
-
Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013-2016.
-
(1998)
Science
, vol.281
, pp. 2013-2016
-
-
Bruchez, M.1
Moronne, M.2
Gin, P.3
Weiss, S.4
Alivisatos, A.P.5
-
7
-
-
0001308502
-
-
Dahan, M.; Laurence, T.; Pinaud, F.; Chemla, D. S.; Alivisatos, A. P.; Sauer, M.; Weiss, S. Opt. Lett. 2001, 26, 825-827.
-
(2001)
Opt. Lett.
, vol.26
, pp. 825-827
-
-
Dahan, M.1
Laurence, T.2
Pinaud, F.3
Chemla, D.S.4
Alivisatos, A.P.5
Sauer, M.6
Weiss, S.7
-
8
-
-
0034800422
-
-
Pathak, S.; Choi, S.-K.; Arnheim, N.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4103-4014.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 4103-14014
-
-
Pathak, S.1
Choi, S.-K.2
Arnheim, N.3
Thompson, M.E.4
-
10
-
-
0031270076
-
-
Dabboussi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem. B 1997, 101, 9463-9475.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 9463-9475
-
-
Dabboussi, B.O.1
Rodriguez-Viejo, J.2
Mikulec, F.V.3
Heine, J.R.4
Mattoussi, H.5
Ober, R.6
Jensen, K.F.7
Bawendi, M.G.8
-
11
-
-
1842411963
-
-
Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. J. Am. Chem. Soc. 1997, 119, 7019-7029.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 7019-7029
-
-
Peng, X.1
Schlamp, M.C.2
Kadavanich, A.V.3
Alivisatos, A.P.4
-
12
-
-
0000504962
-
-
Danek, M.; Jensen, K. F.; Murray, C. B.; Bawendi, M. G. Chem. Mater. 1996, 8, 173-180.
-
(1996)
Chem. Mater.
, vol.8
, pp. 173-180
-
-
Danek, M.1
Jensen, K.F.2
Murray, C.B.3
Bawendi, M.G.4
-
13
-
-
0343454400
-
-
Guénaud, C.; Deleporte, E.; Filoramo, A.; Lelong, P.; Delalande, C.; Morhain, C.; Tournié, E.; Faurie, J.-P. J. Appl. Phys. 2000, 87, 1863-1868.
-
(2000)
J. Appl. Phys.
, vol.87
, pp. 1863-1868
-
-
Guénaud, C.1
Deleporte, E.2
Filoramo, A.3
Lelong, P.4
Delalande, C.5
Morhain, C.6
Tournié, E.7
Faurie, J.-P.8
-
14
-
-
0001058999
-
-
Wei, S.-H.; Zhang, S. B.; Zunger, A. J. Appl. Phys. 2000, 87, 1304-1311.
-
(2000)
J. Appl. Phys.
, vol.87
, pp. 1304-1311
-
-
Wei, S.-H.1
Zhang, S.B.2
Zunger, A.3
-
15
-
-
0000939999
-
-
Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706-8715.
-
(1993)
J. Am. Chem. Soc.
, vol.115
, pp. 8706-8715
-
-
Murray, C.B.1
Norris, D.J.2
Bawendi, M.G.3
-
17
-
-
0000535511
-
-
Qu, L.; Peng, Z. A.; Peng, X. Nano Lett. 2001, 1, 333-337.
-
(2001)
Nano Lett.
, vol.1
, pp. 333-337
-
-
Qu, L.1
Peng, Z.A.2
Peng, X.3
-
18
-
-
0001325711
-
-
Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Nano Lett. 2001, 1, 207-211.
-
(2001)
Nano Lett.
, vol.1
, pp. 207-211
-
-
Talapin, D.V.1
Rogach, A.L.2
Kornowski, A.3
Haase, M.4
Weller, H.5
-
19
-
-
0042438754
-
-
Müller, E., Ed.; G. Thieme Verlag: Stuttgart
-
Dodecylphosphonic acid was synthesised following a literature method: Sasse K. in Methoden der organischen Chemie; Müller, E., Ed.; G. Thieme Verlag: Stuttgart, 1963; vol. 12/1, p 435, 352-353.
-
(1963)
Methoden der Organischen Chemie
, vol.12
, Issue.1
, pp. 435
-
-
Sasse, K.1
-
20
-
-
0346846255
-
-
Trioctylphosphine oxide (TOPO), trioctylphosphine (TOP), and hexadecylamine (HDA) were of the highest purity available and additionally purified by distillation. A typical synthesis of CdSe nanocrystals: 51.4 mg (0.4 mmol) of CdO is placed into a flask containing 1.15 mL of TOPO and 2.85 mL of HDA. The mixture is heated to ca. 270 °C under argon flow, then 230 μL (0.8 mmol) of dodecylphosphonic acid is added. After stabilizing the temperature of the resulting colorless solution at 250 °C, 2.5 mL of a 0.2 M solution of Se powder in TOP is quickly injected. The nanocrystal size depends on the growth time
-
Trioctylphosphine oxide (TOPO), trioctylphosphine (TOP), and hexadecylamine (HDA) were of the highest purity available and additionally purified by distillation. A typical synthesis of CdSe nanocrystals: 51.4 mg (0.4 mmol) of CdO is placed into a flask containing 1.15 mL of TOPO and 2.85 mL of HDA. The mixture is heated to ca. 270 °C under argon flow, then 230 μL (0.8 mmol) of dodecylphosphonic acid is added. After stabilizing the temperature of the resulting colorless solution at 250 °C, 2.5 mL of a 0.2 M solution of Se powder in TOP is quickly injected. The nanocrystal size depends on the growth time.
-
-
-
-
22
-
-
0001419305
-
-
Murray, C. B.; Sun S.; Doyle H.; Betley, T. MRS Bull. 2001, 26, 985-991.
-
(2001)
MRS Bull.
, vol.26
, pp. 985-991
-
-
Murray, C.B.1
Sun, S.2
Doyle, H.3
Betley, T.4
-
23
-
-
0029404579
-
-
Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335-1338.
-
(1995)
Science
, vol.270
, pp. 1335-1338
-
-
Murray, C.B.1
Kagan, C.R.2
Bawendi, M.G.3
-
24
-
-
0348106848
-
-
A colloidal solution of ca. 20 mg of CdSe nanocrystals with an average diameter of 3.6 nm in 4 mL of heptane is placed in a three-neck flask under purified argon flow. After addition of 2.5 mL of TOPO and 1.5 mL of HDA, the mixture is heated to 190 °C and then kept at this temperature with the goal of a complete heptane evaporation. Zinc stearate (316 mg) is dissolved in 2.5 mL of toluene upon gentle heating (ca. 60 °C). After cooling to room temperature, the resulting 0.2 M solution is mixed with 2.5 mL of a 0.2 M solution of Se in TOP. By means of a syringe pump this mixture is injected within 1 h into the reaction flask containing the core nanocrystals at 190-200 °C. Periodically small aliquots are removed in order to monitor the shell growth. After the addition is completed the crystals are annealed at 190 °C for an additional 1-1.5 h
-
A colloidal solution of ca. 20 mg of CdSe nanocrystals with an average diameter of 3.6 nm in 4 mL of heptane is placed in a three-neck flask under purified argon flow. After addition of 2.5 mL of TOPO and 1.5 mL of HDA, the mixture is heated to 190 °C and then kept at this temperature with the goal of a complete heptane evaporation. Zinc stearate (316 mg) is dissolved in 2.5 mL of toluene upon gentle heating (ca. 60 °C). After cooling to room temperature, the resulting 0.2 M solution is mixed with 2.5 mL of a 0.2 M solution of Se in TOP. By means of a syringe pump this mixture is injected within 1 h into the reaction flask containing the core nanocrystals at 190-200 °C. Periodically small aliquots are removed in order to monitor the shell growth. After the addition is completed the crystals are annealed at 190 °C for an additional 1-1.5 h.
-
-
-
-
25
-
-
0348106849
-
-
For the determination of room temperature fluorescence quantum yields, the spectrally integrated emission of a nanocrystal dispersion in toluene was compared to the emission of an ethanol solution of rhodamine 6G of identical optical density (<0.015) at the excitation wavelength (365 nm)
-
For the determination of room temperature fluorescence quantum yields, the spectrally integrated emission of a nanocrystal dispersion in toluene was compared to the emission of an ethanol solution of rhodamine 6G of identical optical density (<0.015) at the excitation wavelength (365 nm).
-
-
-
-
26
-
-
0035900533
-
-
Winter, J. O.; Liu, T. Y.; Korgel, B. A.; Schmidt, C. E. Adv. Mater. 2001, 13, 1673-1677.
-
(2001)
Adv. Mater.
, vol.13
, pp. 1673-1677
-
-
Winter, J.O.1
Liu, T.Y.2
Korgel, B.A.3
Schmidt, C.E.4
-
27
-
-
0000236022
-
-
Willard, D. M.; Carillo, L. L.; Jung, J.; Van Orden, A. Nano Lett. 2001, 1, 469-474.
-
(2001)
Nano Lett.
, vol.1
, pp. 469-474
-
-
Willard, D.M.1
Carillo, L.L.2
Jung, J.3
Van Orden, A.4
-
28
-
-
0347476845
-
-
4OH or NaOH or any other suitable base
-
4OH or NaOH or any other suitable base.
-
-
-
|