-
1
-
-
4944226169
-
-
The status of organohalogen natural product isolation has been consistently monitored by Professor Gordon W. Gribble:(a) Gribble, G. W. J. Chem. Educ. 2004, 81, 1441-1449
-
The status of organohalogen natural product isolation has been consistently monitored by Professor Gordon W. Gribble:(a) Gribble, G. W. J. Chem. Educ. 2004, 81, 1441-1449.
-
-
-
-
2
-
-
34147164504
-
-
(b) Gribble, G. W. Am. Sci. 2004, 92, 342-349.
-
(2004)
Am. Sci
, vol.92
, pp. 342-349
-
-
Gribble, G.W.1
-
5
-
-
51949107007
-
-
From 1995 through 2002, Professor Gribble frequently reviewed the literature pertaining to the isolation of organochlorine natural products. The results were published on the internet in a series of 18 Natural Chlorine Updates. See: http://www.eurochlor.org/index.asp?page=84, accessed June 2, 2008.
-
(e) From 1995 through 2002, Professor Gribble frequently reviewed the literature pertaining to the isolation of organochlorine natural products. The results were published on the internet in a series of 18 "Natural Chlorine Updates". See: http://www.eurochlor.org/index.asp?page=84, accessed June 2, 2008.
-
-
-
-
6
-
-
0033790769
-
-
For several breakthrough examples of catalytic asymmetric α-chlorination of carbonyl compounds, see:a
-
For several breakthrough examples of catalytic asymmetric α-chlorination of carbonyl compounds, see:(a) Hintermann, L.; Togni, A. Helv. Chim. Acta 2000, 83, 2425-2435.
-
(2000)
Helv. Chim. Acta
, vol.83
, pp. 2425-2435
-
-
Hintermann, L.1
Togni, A.2
-
7
-
-
0035925178
-
-
(b) Wack, H.; Taggi, A. E.; Hafez, A. M.; Drury, W. J.; Lectka, T. J. Am. Chem. Soc. 2001, 123, 1531-1532.
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 1531-1532
-
-
Wack, H.1
Taggi, A.E.2
Hafez, A.M.3
Drury, W.J.4
Lectka, T.5
-
8
-
-
0000712093
-
-
(c) Hafez, A. M.; Taggi, A. E.; Wack, H.; Esterbrook, J.; Lectka, T. Org. Lett. 2001, 3, 2049-2051.
-
(2001)
Org. Lett
, vol.3
, pp. 2049-2051
-
-
Hafez, A.M.1
Taggi, A.E.2
Wack, H.3
Esterbrook, J.4
Lectka, T.5
-
9
-
-
1842450587
-
-
(d) Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. J. Am. Chem. Soc. 2004, 126, 4108-4109.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 4108-4109
-
-
Brochu, M.P.1
Brown, S.P.2
MacMillan, D.W.C.3
-
10
-
-
1842863015
-
-
(e) Halland, N.; Braunton, A.; Bachmann, S.; Mango, M.; Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 4790-4791.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 4790-4791
-
-
Halland, N.1
Braunton, A.2
Bachmann, S.3
Mango, M.4
Jørgensen, K.A.5
-
11
-
-
0002049209
-
-
For representative chiral auxiliary- and reagent-based protocols for stereoselective introduction of chlorine, see:(a) Evans, D. A, Sjogren, E. B, Weber, A. E, Conn, R. E. Tetrahedron Lett. 1987, 28, 39-42
-
For representative chiral auxiliary- and reagent-based protocols for stereoselective introduction of chlorine, see:(a) Evans, D. A.; Sjogren, E. B.; Weber, A. E.; Conn, R. E. Tetrahedron Lett. 1987, 28, 39-42.
-
-
-
-
12
-
-
0000687379
-
-
(b) Evans, D. A.; Ellman, J. A.; Dorow, R. L. Tetrahedron Lett. 1987, 28, 1123-1126.
-
(1987)
Tetrahedron Lett
, vol.28
, pp. 1123-1126
-
-
Evans, D.A.1
Ellman, J.A.2
Dorow, R.L.3
-
13
-
-
0001494106
-
-
(c) Hu, S.; Jayaraman, S.; Oehlschlager, A. C. J. Org. Chem. 1996, 61, 7513-7520.
-
(1996)
J. Org. Chem
, vol.61
, pp. 7513-7520
-
-
Hu, S.1
Jayaraman, S.2
Oehlschlager, A.C.3
-
14
-
-
0031735313
-
-
and references therein
-
(d) Hu, S.; Jayaraman, S.; Oehlschlager, A. C. J. Org. Chem. 1998, 63, 8843-8849, and references therein.
-
(1998)
J. Org. Chem
, vol.63
, pp. 8843-8849
-
-
Hu, S.1
Jayaraman, S.2
Oehlschlager, A.C.3
-
15
-
-
51949096689
-
-
There have been innumerable reports of the introduction of single chloride-bearing stereogenic centers using alcohol to chloride conversion protocols
-
There have been innumerable reports of the introduction of single chloride-bearing stereogenic centers using alcohol to chloride conversion protocols.
-
-
-
-
16
-
-
0035951581
-
-
(a) Ciminiello, P.; Fattorusso, E.; Forino, M.; Magno, S.; Di Rosa, M.; Ianaro, A.; Poletti, R. J. Org. Chem. 2001, 66, 578-582.
-
(2001)
J. Org. Chem
, vol.66
, pp. 578-582
-
-
Ciminiello, P.1
Fattorusso, E.2
Forino, M.3
Magno, S.4
Di Rosa, M.5
Ianaro, A.6
Poletti, R.7
-
17
-
-
0037032247
-
-
(b) Ciminiello, P.; Dell'Aversano, C.; Fattorusso, E.; Forino, M.; Di Rosa, M.; Ianaro, A.; Poletti, R. J. Am. Chem. Soc. 2002, 124, 13114-13120.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 13114-13120
-
-
Ciminiello, P.1
Dell'Aversano, C.2
Fattorusso, E.3
Forino, M.4
Di Rosa, M.5
Ianaro, A.6
Poletti, R.7
-
18
-
-
0037318017
-
-
(c) Ciminiello, P.; Dell'Aversano, C.; Fattorusso, E.; Forino, M.; Magno, S. Pure Appl. Chem. 2003, 75, 325-336.
-
(2003)
Pure Appl. Chem
, vol.75
, pp. 325-336
-
-
Ciminiello, P.1
Dell'Aversano, C.2
Fattorusso, E.3
Forino, M.4
Magno, S.5
-
19
-
-
3242696353
-
-
(d) Ciminiello, P.; Dell'Aversano, C.; Fattorusso, E.; Forino, M.; Magno, S.; Di Meglio, P.; Ianaro, A.; Poletti, R. Tetrahedron 2004, 60, 7093-7098.
-
(2004)
Tetrahedron
, vol.60
, pp. 7093-7098
-
-
Ciminiello, P.1
Dell'Aversano, C.2
Fattorusso, E.3
Forino, M.4
Magno, S.5
Di Meglio, P.6
Ianaro, A.7
Poletti, R.8
-
22
-
-
0014549061
-
-
(b) Haines, T. H.; Pousada, M.; Stern, B.; Mayers, G. L. Biochem. J. 1969, 113, 565-566.
-
(1969)
Biochem. J
, vol.113
, pp. 565-566
-
-
Haines, T.H.1
Pousada, M.2
Stern, B.3
Mayers, G.L.4
-
26
-
-
0033525048
-
-
Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibana, K. J. Org. Chem. 1999, 64, 866-876.
-
(1999)
J. Org. Chem
, vol.64
, pp. 866-876
-
-
Matsumori, N.1
Kaneno, D.2
Murata, M.3
Nakamura, H.4
Tachibana, K.5
-
27
-
-
0000573595
-
-
A survey of the distribution of chlorosulfolipids among 30 species of algae has shown that these chlorosulfolipids are present in a significant number of freshwater algae. See:Mercer, E. I.; Davies, C. L. Phytochemistry 1979, 18, 457-462.
-
A survey of the distribution of chlorosulfolipids among 30 species of algae has shown that these chlorosulfolipids are present in a significant number of freshwater algae. See:Mercer, E. I.; Davies, C. L. Phytochemistry 1979, 18, 457-462.
-
-
-
-
28
-
-
0028337266
-
-
Chen, J. L.; Proteau, P. J.; Roberts, M. A.; Gerwick, W. H.; Slate, D. L.; Lee, R. H. J. Nat. Prod. 1994, 57, 524-527.
-
(1994)
J. Nat. Prod
, vol.57
, pp. 524-527
-
-
Chen, J.L.1
Proteau, P.J.2
Roberts, M.A.3
Gerwick, W.H.4
Slate, D.L.5
Lee, R.H.6
-
29
-
-
0036119159
-
-
Increasingly common occurrences of halogenated fatty acids in a variety of organisms have prompted a review article on the subject: Dembitsky, V. M, Srebnik, M. Prog. Lipid Res. 2002, 41, 315-367
-
Increasingly common occurrences of halogenated fatty acids in a variety of organisms have prompted a review article on the subject: Dembitsky, V. M.; Srebnik, M. Prog. Lipid Res. 2002, 41, 315-367.
-
-
-
-
31
-
-
33750986797
-
-
For an excellent lead reference, see
-
For an excellent lead reference, see: Sonntag, L.-S.; Schweizer, S.; Ochsenfeld, C.; Wennemers, H. J. Am. Chem. Soc. 2006, 128, 14697-14703.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 14697-14703
-
-
Sonntag, L.-S.1
Schweizer, S.2
Ochsenfeld, C.3
Wennemers, H.4
-
32
-
-
12944322661
-
-
O'Hagan and coworkers have pioneered the stereocontrolled synthesis of polyfluorinated alkanes with three or four adjacent fluorine-bearing stereogenic centers. For details, and a discussion of the conformations of these interesting polyfluorides, see: a
-
O'Hagan and coworkers have pioneered the stereocontrolled synthesis of polyfluorinated alkanes with three or four adjacent fluorine-bearing stereogenic centers. For details, and a discussion of the conformations of these interesting polyfluorides, see: (a) Nicoletti, M.; O'Hagan, D.; Slawin, A. M. Z. J. Am. Chem. Soc. 2005, 127, 482-483.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 482-483
-
-
Nicoletti, M.1
O'Hagan, D.2
Slawin, A.M.Z.3
-
33
-
-
33845959969
-
-
(b) Hunter, L.; O'Hagan, D.; Slawin, A. M. Z. J. Am. Chem. Soc. 2006, 128, 16422-16423.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 16422-16423
-
-
Hunter, L.1
O'Hagan, D.2
Slawin, A.M.Z.3
-
34
-
-
35448930773
-
-
(c) Hunter, L.; Slawin, A. M. Z.; Kirsch, P.; O'Hagan, D. Angew. Chem., Int. Ed. 2007, 46, 7887-7890.
-
(2007)
Angew. Chem., Int. Ed
, vol.46
, pp. 7887-7890
-
-
Hunter, L.1
Slawin, A.M.Z.2
Kirsch, P.3
O'Hagan, D.4
-
35
-
-
51949108199
-
-
In our work focusing on the chlorosulfolipids, we wish to avoid the potentially problematic conversion of acyclic polyols into the corresponding polychlorides; this procedure could suffer from serious issues of regiocontrol as targets 1-5 bear a mixture of chlorides and hydroxyl/sulfate groups, and potential problems of partial retention in the chlorination reactions would be devastating. In the context of hexapyranose sugars, some beautiful work for the conversion of multiple hydroxyl groups into chlorides, with inversion, has been reported:(a) Jennings, H. J, Jones, J. K. N. Can. J. Chem. 1965, 43, 2372-2385
-
In our work focusing on the chlorosulfolipids, we wish to avoid the potentially problematic conversion of acyclic polyols into the corresponding polychlorides; this procedure could suffer from serious issues of regiocontrol as targets 1-5 bear a mixture of chlorides and hydroxyl/sulfate groups, and potential problems of partial retention in the chlorination reactions would be devastating. In the context of hexapyranose sugars, some beautiful work for the conversion of multiple hydroxyl groups into chlorides, with inversion, has been reported:(a) Jennings, H. J.; Jones, J. K. N. Can. J. Chem. 1965, 43, 2372-2385.
-
-
-
-
37
-
-
0030883527
-
-
For state-of-the-art enantioselective syntheses of propargylic alcohols, which can be reduced to either the (E)- or (Z)-allylic alcohols, see:(a) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738-8739.
-
For state-of-the-art enantioselective syntheses of propargylic alcohols, which can be reduced to either the (E)- or (Z)-allylic alcohols, see:(a) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738-8739.
-
-
-
-
38
-
-
0002217612
-
-
(b) Boyall, D.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2002, 4, 2605-2606.
-
(2002)
Org. Lett
, vol.4
, pp. 2605-2606
-
-
Boyall, D.1
Frantz, D.E.2
Carreira, E.M.3
-
39
-
-
84987584214
-
-
For a seminal contribution in the area of direct enantioenriched (E)- allylic alcohol synthesis, see: Oppolzer, W.; Radinov, R. N. Helv. Chim. Acta 1992, 75, 170-173.
-
For a seminal contribution in the area of direct enantioenriched (E)- allylic alcohol synthesis, see: Oppolzer, W.; Radinov, R. N. Helv. Chim. Acta 1992, 75, 170-173.
-
-
-
-
40
-
-
37549059608
-
-
For direct syntheses of enantioenriched (Z)-allylic alcohols, see: Salvi, L.; Jeon, S.-J.; Fisher, E. L.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2007, 129, 16119-16125.
-
For direct syntheses of enantioenriched (Z)-allylic alcohols, see: Salvi, L.; Jeon, S.-J.; Fisher, E. L.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2007, 129, 16119-16125.
-
-
-
-
41
-
-
0001632904
-
-
Studies of related processes, including dibromination, haloetherification, halolactonization, and selenofunctionalization of alkenes have all been studied in some detail. For some representative examples, see:(a) Liotta, D.; Zima, G.; Saindane, M. J. Org. Chem. 1982, 47, 1258-1267.
-
Studies of related processes, including dibromination, haloetherification, halolactonization, and selenofunctionalization of alkenes have all been studied in some detail. For some representative examples, see:(a) Liotta, D.; Zima, G.; Saindane, M. J. Org. Chem. 1982, 47, 1258-1267.
-
-
-
-
42
-
-
0021097053
-
-
(b) Chamberlin, A. R.; Dezube, M.; Dussault, P.; McMills, M. C. J. Am. Chem. Soc. 1983, 105, 5819-5825.
-
(1983)
J. Am. Chem. Soc
, vol.105
, pp. 5819-5825
-
-
Chamberlin, A.R.1
Dezube, M.2
Dussault, P.3
McMills, M.C.4
-
44
-
-
0000012312
-
-
Morrison, J. D, Ed, Academic Press, Inc, New York
-
(d) Bartlett, P. A. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic Press, Inc.: New York, 1984; Vol. 3, pp 411-454.
-
(1984)
Asymmetric Synthesis
, vol.3
, pp. 411-454
-
-
Bartlett, P.A.1
-
45
-
-
0030065102
-
-
(e) Kim, K. S.; Park, H. B.; Kim, J. Y.; Ahn, Y. H.; Jeong, I. H. Tetrahedron Lett. 1996, 37, 1249-1252.
-
(1996)
Tetrahedron Lett
, vol.37
, pp. 1249-1252
-
-
Kim, K.S.1
Park, H.B.2
Kim, J.Y.3
Ahn, Y.H.4
Jeong, I.H.5
-
46
-
-
0006698496
-
-
The significantly different behavior among the halides and related reagents means that previously studied stereoselective halogenation/ halofunctionalization reactions of allylic alcohols do not necessarily translate to the corresponding dichlorination process. High selectivities in the selenofunctionalization of allylic alcohols are thought to derive from Se-O attractive interactions; analogous interactions are not likely to be operative in chlorination reactions. For an excellent study of the diastereoselective dibromination of chiral allylic alcohols, which resulted in high levels of selectivity in alcoholic solvents with an excess of added bromide ion, see:(a) Midland, M. M, Halterman, R. L. J. Org. Chem. 1981, 46, 1227-1229. Attempts to adapt this procedure with the chlorine equivalent Et 4NCl3 in alcoholic solvents, with added chloride, led to predominant chloroetherification and apparent low selectivity in the small amount of dichlorin
-
3 in alcoholic solvents, with added chloride, led to predominant chloroetherification and apparent low selectivity in the small amount of dichlorinated product observed.
-
-
-
-
47
-
-
33645897192
-
-
For an excellent review, see:a
-
For an excellent review, see:(a) Hoffmann, R. W. Chem. Rev 1989, 89, 1841-1860.
-
(1989)
Chem. Rev
, vol.89
, pp. 1841-1860
-
-
Hoffmann, R.W.1
-
48
-
-
0018425810
-
-
1,3-strain minimization for acyclic stereocontrol in natural product synthesis, see the first synthesis of monensin by Kishi and coworkers: (b) Schmid, G.; Fukuyama, T.; Akasaka, K.; Kishi, Y. J. Am. Chem. Soc. 1979, 101, 259-260.
-
1,3-strain minimization for acyclic stereocontrol in natural product synthesis, see the first synthesis of monensin by Kishi and coworkers: (b) Schmid, G.; Fukuyama, T.; Akasaka, K.; Kishi, Y. J. Am. Chem. Soc. 1979, 101, 259-260.
-
-
-
-
49
-
-
0031592567
-
-
Markó, I. E.; Richardson, P. R.; Bailey, M.; Maguire, A. R.; Coughlan, N. Tetrahedron Lett. 1997, 38, 2339-2342.
-
(1997)
Tetrahedron Lett
, vol.38
, pp. 2339-2342
-
-
Markó, I.E.1
Richardson, P.R.2
Bailey, M.3
Maguire, A.R.4
Coughlan, N.5
-
50
-
-
0026071213
-
-
An earlier variant of this protocol used oxalyl chloride as a chlorine source and generated a thermally unstable reagent of unknown structure that lost chlorination activity above -35°C: (a) Markó, I. E, Richardson, P. F. Tetrahedron Lett. 1991, 32, 1831-1834
-
An earlier variant of this protocol used oxalyl chloride as a chlorine source and generated a thermally unstable reagent of unknown structure that lost chlorination activity above -35°C: (a) Markó, I. E.; Richardson, P. F. Tetrahedron Lett. 1991, 32, 1831-1834.
-
-
-
-
52
-
-
51949109775
-
-
Schlama, T.; Gabriel, K.; Gouverneur, V.; Mioskowski, C. Angew. Chem., Int. Ed. 1997, 36, 2341-2344.
-
(1997)
Angew. Chem., Int. Ed
, vol.36
, pp. 2341-2344
-
-
Schlama, T.1
Gabriel, K.2
Gouverneur, V.3
Mioskowski, C.4
-
53
-
-
0000458209
-
-
Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993, 93, 1307-1370.
-
(1993)
Chem. Rev
, vol.93
, pp. 1307-1370
-
-
Hoveyda, A.H.1
Evans, D.A.2
Fu, G.C.3
-
54
-
-
51949110543
-
-
In ref 21, the Markó-Maguire reagent is also reported to open epoxides to the corresponding chlorohydrins and oxidize sufides to sulfoxides. We have not evaluated the reactivity of the Mioskowski reagent in these transformations, as the presence of manganese salt byproducts in the former procedure might well be critical
-
In ref 21, the Markó-Maguire reagent is also reported to open epoxides to the corresponding chlorohydrins and oxidize sufides to sulfoxides. We have not evaluated the reactivity of the Mioskowski reagent in these transformations, as the presence of manganese salt byproducts in the former procedure might well be critical.
-
-
-
-
55
-
-
0004274173
-
Discovery of the Elements
-
As an important historical note, Scheele's discovery of molecular chlorine resulted from the oxidation of chloride ion by manganese oxides. See:, 3rd ed, Easton, PA
-
As an important historical note, Scheele's discovery of molecular chlorine resulted from the oxidation of chloride ion by manganese oxides. See: Weeks, M. E. Discovery of the Elements, 3rd ed.; Journal of Chemical Education: Easton, PA, 1935; pp 253-257.
-
(1935)
Journal of Chemical Education
, pp. 253-257
-
-
Weeks, M.E.1
-
56
-
-
51949089610
-
-
Et4NCl3 effects smooth anti dichlorination of alkynes (ref 23, We have found that the Markó-Maguire reagent performs the same transformation. This is also consistent with these reagents being similar in nature and argues against a possible mechanism involving syn chloromanganation of the π-system, followed by invertive SN2 displacement of manganese by chloride see reference 22a, in the case of alkyne substrates, SN2 displacement on an sp2 carbon would need to be invoked
-
2 carbon would need to be invoked.
-
-
-
-
57
-
-
51949092837
-
-
Please see the Supporting Information for details
-
Please see the Supporting Information for details.
-
-
-
-
58
-
-
36849010691
-
-
For a recent account of highly stereroselective alkynyllithium additions to α-chloroaldehydes, see
-
For a recent account of highly stereroselective alkynyllithium additions to α-chloroaldehydes, see: Kang, B.; Britton, R. Org. Lett. 2007, 9, 5083-5086.
-
(2007)
Org. Lett
, vol.9
, pp. 5083-5086
-
-
Kang, B.1
Britton, R.2
-
59
-
-
33644959351
-
-
The addition of organometallic nucleophiles to a-chloroaldehydes generally proceeds to afford the anti product, consistent with the polar Felkin-Anh model (hyperconjugative stabilization of the transition state/steric control, though the Cornforth model (dipole minimization/steric control) also accounts for the stereochemistry of the products. For an excellent discussion and lead reference, see: Cee, V. J, Cramer, C. J, Evans, D. A. J. Am. Chem. Soc. 2006, 128, 2920-2930
-
The addition of organometallic nucleophiles to a-chloroaldehydes generally proceeds to afford the anti product, consistent with the polar Felkin-Anh model (hyperconjugative stabilization of the transition state/steric control), though the Cornforth model (dipole minimization/steric control) also accounts for the stereochemistry of the products. For an excellent discussion and lead reference, see: Cee, V. J.; Cramer, C. J.; Evans, D. A. J. Am. Chem. Soc. 2006, 128, 2920-2930.
-
-
-
-
60
-
-
0032564684
-
-
For one example of the determination of halohydrin relative stereochemistry by stereospecific conversion to the corresponding epoxides, see:(a) Besse, P.; Sokoltchik, T.; Veschambre, H. Tetrahedron: Asymmetry 1998, 9, 4441-4457. See also refs 3c,d, and 29.
-
For one example of the determination of halohydrin relative stereochemistry by stereospecific conversion to the corresponding epoxides, see:(a) Besse, P.; Sokoltchik, T.; Veschambre, H. Tetrahedron: Asymmetry 1998, 9, 4441-4457. See also refs 3c,d, and 29.
-
-
-
|