메뉴 건너뛰기




Volumn 10, Issue 5, 1996, Pages 533-550

Fuzzy clustering for automated tool condition monitoring in machining

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATION; CUTTING; FEATURE EXTRACTION; FUZZY SETS; LEARNING ALGORITHMS; NEURAL NETWORKS; PARALLEL PROCESSING SYSTEMS; PROBABILISTIC LOGICS; SENSORS;

EID: 0030234975     PISSN: 08883270     EISSN: None     Source Type: Journal    
DOI: 10.1006/mssp.1996.0037     Document Type: Article
Times cited : (39)

References (28)
  • 3
    • 0027641476 scopus 로고
    • Intelligent real-time predictive diagnostics for cutting tools and supervisory control of machining operations
    • K. RAMAMURTHI and C. L. HOUGH JR. 1993 ASME Journal of Engineering for Industry 115, 268-277. Intelligent real-time predictive diagnostics for cutting tools and supervisory control of machining operations.
    • (1993) ASME Journal of Engineering for Industry , vol.115 , pp. 268-277
    • Ramamurthi, K.1    Hough C.L., Jr.2
  • 4
    • 0011322267 scopus 로고
    • An experimental study of strategies for integrating sensor information in machining
    • G. CHRYSSOLOURIS and M. DOMROESE 1989 Annals of the CIRP 38, 425-428. An experimental study of strategies for integrating sensor information in machining.
    • (1989) Annals of the CIRP , vol.38 , pp. 425-428
    • Chryssolouris, G.1    Domroese, M.2
  • 5
    • 15844405414 scopus 로고
    • Neural network sensor fusion for tool condition monitoring
    • D. A. DORNFELD 1990 Annals of the CIRP 39, 101-105. Neural network sensor fusion for tool condition monitoring.
    • (1990) Annals of the CIRP , vol.39 , pp. 101-105
    • Dornfeld, D.A.1
  • 6
    • 0025478252 scopus 로고
    • Sensor integration using neural networks for intelligent tool condition monitoring
    • S. RANGWALA and D. DORNFELD 1990 ASME Journal of Engineering for Industry 112, 219-228. Sensor integration using neural networks for intelligent tool condition monitoring.
    • (1990) ASME Journal of Engineering for Industry , vol.112 , pp. 219-228
    • Rangwala, S.1    Dornfeld, D.2
  • 9
    • 0027699649 scopus 로고
    • System identification using ARMA modelling and neural networks
    • B. R. PRAMOD and S. C. BOSE 1993 ASME Journal of Engineering for Industry 115, 487-491. System identification using ARMA modelling and neural networks.
    • (1993) ASME Journal of Engineering for Industry , vol.115 , pp. 487-491
    • Pramod, B.R.1    Bose, S.C.2
  • 10
    • 0028430240 scopus 로고
    • Self-organizing neural network application to drill wear classification
    • E. GOVEKAR and I. GRABEC 1994 ASME Journal of Engineering for Industry 116, 233-238. Self-organizing neural network application to drill wear classification.
    • (1994) ASME Journal of Engineering for Industry , vol.116 , pp. 233-238
    • Govekar, E.1    Grabec, I.2
  • 12
    • 58149130913 scopus 로고
    • Monitoring drill wear states using a fuzzy pattern recognition technique
    • P. G. LI and S. M. WU 1988 ASME Journal of Engineering for Industry 110, 297-300. Monitoring drill wear states using a fuzzy pattern recognition technique.
    • (1988) ASME Journal of Engineering for Industry , vol.110 , pp. 297-300
    • Li, P.G.1    Wu, S.M.2
  • 15
    • 0027850514 scopus 로고
    • A fuzzy decision system for fault classification under high levels of uncertainty
    • Y. CHEN 1993 Manufacturing Science and Engineering ASME PED 64, 359-368. A fuzzy decision system for fault classification under high levels of uncertainty.
    • (1993) Manufacturing Science and Engineering ASME PED , vol.64 , pp. 359-368
    • Chen, Y.1
  • 16
    • 0027094754 scopus 로고
    • Fuzzy pattern recognition for tool wear monitoring in diamond turning
    • T. J. KO and D. W. CHO 1992 Annals of the CIRP 41, 125-128. Fuzzy pattern recognition for tool wear monitoring in diamond turning.
    • (1992) Annals of the CIRP , vol.41 , pp. 125-128
    • Ko, T.J.1    Cho, D.W.2
  • 19
    • 0028730386 scopus 로고
    • Tool condition monitoring in machining by fuzzy neural networks
    • S. LI and M. A. ELBESTAWI 1994 Dynamics Systems and Control ASME DSC 55, 1019-1034. Tool condition monitoring in machining by fuzzy neural networks.
    • (1994) Dynamics Systems and Control ASME DSC , vol.55 , pp. 1019-1034
    • Li, S.1    Elbestawi, M.A.2
  • 24
    • 0026927202 scopus 로고
    • Fuzzy min-max neural networks - Part 1: Classification
    • P. K. SIMPSON 1992 IEEE Transactions on Neural Networks 3, 776-786. Fuzzy min-max neural networks - part 1: classification.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 776-786
    • Simpson, P.K.1
  • 25
    • 0027542561 scopus 로고
    • Fuzzy min-max neural networks - Part 2: Clustering
    • P. K. SIMPSON 1993 IEEE Transactions on Fuzzy Systems 1, 32-45. Fuzzy min-max neural networks - part 2: clustering.
    • (1993) IEEE Transactions on Fuzzy Systems , vol.1 , pp. 32-45
    • Simpson, P.K.1
  • 27
    • 84918441630 scopus 로고
    • Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition
    • N. COVER 1965 IEEE Transactions on Computers 14, 326-334. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition.
    • (1965) IEEE Transactions on Computers , vol.14 , pp. 326-334
    • Cover, N.1
  • 28
    • 0024771475 scopus 로고
    • Pattern classification using neural networks
    • November
    • R. P. LIPPMANN 1989 IEEE Communication Magazine November, 47-64. Pattern classification using neural networks.
    • (1989) IEEE Communication Magazine , pp. 47-64
    • Lippmann, R.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.