-
1
-
-
85099479344
-
Learning with many irrelevant features
-
MIT Press
-
H. Almuallim and T. G. Dietterich. Learning with many irrelevant features. In Proc. AAAI-91, pages 547-552. MIT Press, 1991.
-
(1991)
Proc. AAAI-91
, pp. 547-552
-
-
Almuallim, H.1
Dietterich, T.G.2
-
2
-
-
0026966646
-
A training algorithm for optimal margin classifier
-
Pittsburgh, USA
-
B. Boser, I. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifier. In Fifth Annual Workshop on Computational Learning Theory, pages 144-152, Pittsburgh, USA, 1992.
-
(1992)
Fifth Annual Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.N.3
-
3
-
-
27144489164
-
A tutorial on support vector machines for pattern recogintion
-
C. J. G. Burges. A tutorial on support vector machines for pattern recogintion. Data Mining and Knowledge Discovery, 2 (2):121-167, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.G.1
-
4
-
-
0042326376
-
Bayesian trigonometric support vector classifier
-
W. Chu, S. S. Keerthi, and C. J. Ong. Bayesian trigonometric support vector classifier. Neural Computation, 15(9):2227-2254, 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.9
, pp. 2227-2254
-
-
Chu, W.1
Keerthi, S.S.2
Ong, C.J.3
-
5
-
-
1242331293
-
Bayesian support vector regression using a unified loss function
-
W. Chu, S. S. Keerthi, and C. J. Ong. Bayesian support vector regression using a unified loss function. IEEE transactions on neural networks, 15(l):29-44, 2004.
-
(2004)
IEEE transactions on neural networks
, vol.15
, Issue.L
, pp. 29-44
-
-
Chu, W.1
Keerthi, S.S.2
Ong, C.J.3
-
6
-
-
0001609938
-
Efficient approaches to Gaussian process classification
-
L. Csató, E. Fokoué, M. Opper, B. Schottky, and O. Winther. Efficient approaches to Gaussian process classification. In Advances in Neural Information Processing Systems, volume 12, pages 251-257, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 251-257
-
-
Csató, L.1
Fokoué, E.2
Opper, M.3
Schottky, B.4
Winther, O.5
-
7
-
-
34047160784
-
-
T. Evgeniou, M. Pontil, and T. Poggio. A unified framework for regularization networks and support vector machines. A.I. Memo 1654, MIT, 1999.
-
T. Evgeniou, M. Pontil, and T. Poggio. A unified framework for regularization networks and support vector machines. A.I. Memo 1654, MIT, 1999.
-
-
-
-
10
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, and S. Barnhill. Gene selection for cancer classification using support vector machines. Machine Learning, 40:389-422, 2002.
-
(2002)
Machine Learning
, vol.40
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
-
12
-
-
85099325734
-
Irrelevant features and the subset selection problem
-
Morgan Kaufmann Publishers
-
G. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection problem. In Proc. ML-94, pages 121-129. Morgan Kaufmann Publishers, 1994.
-
(1994)
Proc. ML-94
, pp. 121-129
-
-
John, G.1
Kohavi, R.2
Pfleger, K.3
-
13
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM classifier design
-
March
-
S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 13 (3):637-649, March 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.3
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
16
-
-
0027002164
-
The feature selection problem: Traditional methods and a new algorithm
-
MIT Press
-
K. Kira and L. A. Rendell. The feature selection problem: Traditional methods and a new algorithm. In Proc. AAAI-92, pages 129-134. MIT Press, 1992.
-
(1992)
Proc. AAAI-92
, pp. 129-134
-
-
Kira, K.1
Rendell, L.A.2
-
17
-
-
0001901666
-
Induction of selective Bayesian classifiers
-
Morgan Kaufmann
-
P. Langley and S. Sage. Induction of selective Bayesian classifiers. In Proc. UAI-94, pages 399-406. Morgan Kaufmann, 1994.
-
(1994)
Proc. UAI-94
, pp. 399-406
-
-
Langley, P.1
Sage, S.2
-
18
-
-
0002704818
-
A practical Bayesian framework for back propagation networks
-
D. J. C. MacKay. A practical Bayesian framework for back propagation networks. Neural Computation, 4(3):448-472, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 448-472
-
-
MacKay, D.J.C.1
-
19
-
-
0000335983
-
Bayesian methods for backpropagation networks
-
D. J. C. MacKay. Bayesian methods for backpropagation networks. Models of Neural Networks III, pages 211-254, 1994.
-
(1994)
Models of Neural Networks III
, pp. 211-254
-
-
MacKay, D.J.C.1
-
21
-
-
0003611509
-
Bayesian Learning for Neural Networks
-
Springer
-
R. M. Neal. Bayesian Learning for Neural Networks. Lecture Notes in Statistics. Springer, 1996.
-
(1996)
Lecture Notes in Statistics
-
-
Neal, R.M.1
-
22
-
-
0004220749
-
Monte Carlo implementation of Gaussian process models for Bayesian regression and classification
-
Technical Report No. 9702, Department of Statistics, University of Toronto
-
R. M. Neal. Monte Carlo implementation of Gaussian process models for Bayesian regression and classification. Technical Report No. 9702, Department of Statistics, University of Toronto, 1997a.
-
(1997)
-
-
Neal, R.M.1
-
23
-
-
34047176733
-
-
R. M. Neal. Regression and classification using Gaussian process priors (with discussion). In J. M. Bernerdo, J. O. Berger, A. P. Dawid, and A. P. M. Smith, editors, Bayesian Statistics, 6, 1997b.
-
R. M. Neal. Regression and classification using Gaussian process priors (with discussion). In J. M. Bernerdo, J. O. Berger, A. P. Dawid, and A. P. M. Smith, editors, Bayesian Statistics, volume 6, 1997b.
-
-
-
-
24
-
-
0034320350
-
Gaussian processes for classification: Mean field algorithm
-
M. Opper and O. Winther. Gaussian processes for classification: Mean field algorithm. Neural Computation, 12(11):2655-2684, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.11
, pp. 2655-2684
-
-
Opper, M.1
Winther, O.2
-
25
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, MIT Press
-
J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 185-208. MIT Press, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.C.1
-
27
-
-
0001767260
-
Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers
-
M. Seeger. Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers. In Advances in Neural Information Processing Systems, volume 12, 1999.
-
(1999)
Advances in Neural Information Processing Systems
, vol.12
-
-
Seeger, M.1
-
28
-
-
0003401675
-
A tutorial on support vector regression
-
Technical Report NC2-TR-1998-030, GMD First, October
-
A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Technical Report NC2-TR-1998-030, GMD First, October 1998.
-
(1998)
-
-
Smola, A.J.1
Schölkopf, B.2
-
31
-
-
84898948710
-
Feature selection in SVMs
-
Todd Leen, Tom Dietterich, and Volker Tresp, editors, MIT Press
-
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, and T. Poggio. Feature selection in SVMs. In Todd Leen, Tom Dietterich, and Volker Tresp, editors, Advances in Neural Information Processing Systems, volume 13, 2001. MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
-
33
-
-
0002295913
-
Gaussian processes for regression
-
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, MIT Press
-
C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8, pages 598-604, 1996. MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 598-604
-
-
Williams, C.K.I.1
Rasmussen, C.E.2
|