메뉴 건너뛰기




Volumn 190, Issue 18, 2008, Pages 6178-6187

CcpN controls central carbon fluxes in Bacillus subtilis

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; GLYCERALDEHYDE 3 PHOSPHATE DEHYDROGENASE; PENTOSE PHOSPHATE; PHOSPHOENOLPYRUVATE CARBOXYKINASE (GTP); PYRUVATE CARBOXYLASE; PYRUVATE KINASE;

EID: 51549110350     PISSN: 00219193     EISSN: None     Source Type: Journal    
DOI: 10.1128/JB.00552-08     Document Type: Article
Times cited : (37)

References (45)
  • 1
    • 1342293310 scopus 로고
    • Transformation studies on the linkage of markers in the tryptophan pathway in Bacillus subtilis
    • Anagnostopoulos, C., and I. P. Crawford. 1961. Transformation studies on the linkage of markers in the tryptophan pathway in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 47:378-390.
    • (1961) Proc. Natl. Acad. Sci. USA , vol.47 , pp. 378-390
    • Anagnostopoulos, C.1    Crawford, I.P.2
  • 2
    • 51549114388 scopus 로고    scopus 로고
    • Transcriptional controls of the central carbon metabolism in Bacillus subtilis
    • Y. Fujita ed, Transworld Research Network, Trivandrum, India
    • Aymerich, S., A. Goelzer, and V. Fromion. 2007. Transcriptional controls of the central carbon metabolism in Bacillus subtilis, p. 29-73. In Y. Fujita (ed.), Global regulatory networks in Bacillus subtilis. Transworld Research Network, Trivandrum, India.
    • (2007) Global regulatory networks in Bacillus subtilis , pp. 29-73
    • Aymerich, S.1    Goelzer, A.2    Fromion, V.3
  • 3
    • 0022622052 scopus 로고
    • 5′-Noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis
    • Aymerich, S., G. Gonzy-Treboul, and M. Steinmetz. 1986. 5′-Noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis. J. Bacteriol. 166:993-998.
    • (1986) J. Bacteriol , vol.166 , pp. 993-998
    • Aymerich, S.1    Gonzy-Treboul, G.2    Steinmetz, M.3
  • 4
    • 0038267065 scopus 로고    scopus 로고
    • Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: Regulation of the central metabolic pathways
    • Blencke, H. M., G. Homuth, H. Ludwig, U. Mader, M. Hecker, and J. Stulke. 2003. Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways. Metab. Eng. 5:133-149.
    • (2003) Metab. Eng , vol.5 , pp. 133-149
    • Blencke, H.M.1    Homuth, G.2    Ludwig, H.3    Mader, U.4    Hecker, M.5    Stulke, J.6
  • 5
    • 0037046271 scopus 로고    scopus 로고
    • Carbon catabolite repression in bacteria: Choice of the carbon source and autoregulatory limitation of sugar utilization
    • Brückner, R., and F. Titgemeyer. 2002. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol. Lett. 209:141-148.
    • (2002) FEMS Microbiol. Lett , vol.209 , pp. 141-148
    • Brückner, R.1    Titgemeyer, F.2
  • 6
    • 0028067589 scopus 로고
    • Metabolic responses to substrate futile cycling in Escherichia coli
    • Chao, Y. P., and J. C. Liao. 1994. Metabolic responses to substrate futile cycling in Escherichia coli. J. Biol. Chem. 269:5122-5126.
    • (1994) J. Biol. Chem , vol.269 , pp. 5122-5126
    • Chao, Y.P.1    Liao, J.C.2
  • 7
    • 0027426767 scopus 로고
    • Control of gluconeogenic growth by pps and pck in Escherichia coli
    • Chao, Y. P., R. Patnaik, W. D. Roof, R. F. Young, and J. C. Liao. 1993. Control of gluconeogenic growth by pps and pck in Escherichia coli. J. Bacteriol. 175:6939-6944.
    • (1993) J. Bacteriol , vol.175 , pp. 6939-6944
    • Chao, Y.P.1    Patnaik, R.2    Roof, W.D.3    Young, R.F.4    Liao, J.C.5
  • 8
    • 0037344870 scopus 로고    scopus 로고
    • Regulation of the central glycolytic genes in Bacillus subtilis: Binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate
    • Doan, T., and S. Aymerich. 2003. Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Mol. Microbiol. 47:1709-1721.
    • (2003) Mol. Microbiol , vol.47 , pp. 1709-1721
    • Doan, T.1    Aymerich, S.2
  • 9
    • 0141703516 scopus 로고    scopus 로고
    • The Bacillus subtilis ywkA gene encodes a malic enzyme and its transcription is activated by the YufL/YufM two-component system in response to malate
    • Doan, T., P. Servant, S. Tojo, H. Yamaguchi, G. Lerondel, K. Yoshida, Y. Fujita, and S. Aymerich. 2003. The Bacillus subtilis ywkA gene encodes a malic enzyme and its transcription is activated by the YufL/YufM two-component system in response to malate. Microbiology 149:2331-2343.
    • (2003) Microbiology , vol.149 , pp. 2331-2343
    • Doan, T.1    Servant, P.2    Tojo, S.3    Yamaguchi, H.4    Lerondel, G.5    Yoshida, K.6    Fujita, Y.7    Aymerich, S.8
  • 11
    • 0034640272 scopus 로고    scopus 로고
    • Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium
    • Fillinger, S., S. Boschi-Muller, S. Azza, E. Dervyn, G. Branlant, and S. Aymerich. 2000. Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J. Biol. Chem. 275:14031-14037.
    • (2000) J. Biol. Chem , vol.275 , pp. 14031-14037
    • Fillinger, S.1    Boschi-Muller, S.2    Azza, S.3    Dervyn, E.4    Branlant, G.5    Aymerich, S.6
  • 12
    • 20044375201 scopus 로고    scopus 로고
    • Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism
    • Fischer, E., and U. Sauer. 2005. Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat. Genet. 37:636-640.
    • (2005) Nat. Genet , vol.37 , pp. 636-640
    • Fischer, E.1    Sauer, U.2
  • 13
    • 0037335931 scopus 로고    scopus 로고
    • Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS
    • Fischer, E., and U. Sauer. 2003. Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur. J. Biochem. 270:880-891.
    • (2003) Eur. J. Biochem , vol.270 , pp. 880-891
    • Fischer, E.1    Sauer, U.2
  • 15
    • 0025014845 scopus 로고
    • A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis
    • Fouet, A., and A. L. Sonenshein. 1990. A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis. J. Bacteriol. 172:835-844.
    • (1990) J. Bacteriol , vol.172 , pp. 835-844
    • Fouet, A.1    Sonenshein, A.L.2
  • 16
    • 0018188663 scopus 로고
    • Biosynthesis and regulation of fructose-1,6-bisphosphatase and phosphofructokinase in Saccharomyces cerevisiae grown in the presence of glucose and gluconeogenic carbon sources
    • Foy, J. J., and J. K. Bhattacharjee. 1978. Biosynthesis and regulation of fructose-1,6-bisphosphatase and phosphofructokinase in Saccharomyces cerevisiae grown in the presence of glucose and gluconeogenic carbon sources. J. Bacteriol. 136:647-656.
    • (1978) J. Bacteriol , vol.136 , pp. 647-656
    • Foy, J.J.1    Bhattacharjee, J.K.2
  • 17
    • 35748958800 scopus 로고    scopus 로고
    • Carbon catabolite control and metabolic networks are mediated by the CcpA protein in Bacillus subtilis
    • Y. Fujita ed, Transworld Research Network, Trivandrum, India
    • Fujita, Y., Y. Miwa, S. Tojo, and M. Hirooka. 2007. Carbon catabolite control and metabolic networks are mediated by the CcpA protein in Bacillus subtilis, p. 92-110. In Y. Fujita (ed.), Global regulatory networks in Bacillus subtilis. Transworld Research Network, Trivandrum, India.
    • (2007) Global regulatory networks in Bacillus subtilis , pp. 92-110
    • Fujita, Y.1    Miwa, Y.2    Tojo, S.3    Hirooka, M.4
  • 18
    • 0031810672 scopus 로고    scopus 로고
    • Yeast carbon catabolite repression
    • Gancedo, J. M. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62:334-361.
    • (1998) Microbiol. Mol. Biol. Rev , vol.62 , pp. 334-361
    • Gancedo, J.M.1
  • 19
    • 34347396784 scopus 로고    scopus 로고
    • Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli
    • Gutierrez-Rios, R. M., J. A. Freyre-Gonzalez, O. Resendis, J. Collado-Vides, M. Saier, and G. Gosset. 2007. Identification of regulatory network topological units coordinating the genome-wide transcriptional response to glucose in Escherichia coli. BMC Microbiol. 7:53.
    • (2007) BMC Microbiol , vol.7 , pp. 53
    • Gutierrez-Rios, R.M.1    Freyre-Gonzalez, J.A.2    Resendis, O.3    Collado-Vides, J.4    Saier, M.5    Gosset, G.6
  • 20
    • 51549086891 scopus 로고    scopus 로고
    • Harwood, C. R., and S. M. Cutting. 1990. Molecular biological methods for Bacillus, lohn Wiley & Sons, Ltd., Chichester, England.
    • Harwood, C. R., and S. M. Cutting. 1990. Molecular biological methods for Bacillus, lohn Wiley & Sons, Ltd., Chichester, England.
  • 21
    • 0027310324 scopus 로고
    • Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases
    • Haselbeck, R. J., and L. McAlister-Henn. 1993. Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases. J. Biol. Chem. 268:12116-12122.
    • (1993) J. Biol. Chem , vol.268 , pp. 12116-12122
    • Haselbeck, R.J.1    McAlister-Henn, L.2
  • 22
    • 33749165741 scopus 로고    scopus 로고
    • The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism
    • Heidrich, N., A. Chinali, U. Gerth, and S. Brantl. 2006. The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism. Mol. Microbiol. 62:520-536.
    • (2006) Mol. Microbiol , vol.62 , pp. 520-536
    • Heidrich, N.1    Chinali, A.2    Gerth, U.3    Brantl, S.4
  • 23
    • 0030057004 scopus 로고    scopus 로고
    • The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis
    • Henkin, T. M. 1996. The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. FEMS Microbiol. Lett. 135:9-15.
    • (1996) FEMS Microbiol. Lett , vol.135 , pp. 9-15
    • Henkin, T.M.1
  • 24
    • 0026033650 scopus 로고
    • Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors
    • Henkin, T. M., F. J. Grundy, W. L. Nicholson, and G. H. Chambliss. 1991. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Mol. Microbiol. 5:575-584.
    • (1991) Mol. Microbiol , vol.5 , pp. 575-584
    • Henkin, T.M.1    Grundy, F.J.2    Nicholson, W.L.3    Chambliss, G.H.4
  • 25
    • 0027994424 scopus 로고
    • Identification of two distinct Bacillus subtilis citrate synthase genes
    • Jin, S., and A. L. Sonenshein. 1994. Identification of two distinct Bacillus subtilis citrate synthase genes. J. Bacteriol. 176:4669-4679.
    • (1994) J. Bacteriol , vol.176 , pp. 4669-4679
    • Jin, S.1    Sonenshein, A.L.2
  • 27
    • 33745461463 scopus 로고    scopus 로고
    • YtsJ has the major physiological role of the four paralogous malic enzyme isoforms in Bacillus subtilis
    • Lerondel, G., T. Doan, N. Zamboni, U. Sauer, and S. Aymerich. 2006. YtsJ has the major physiological role of the four paralogous malic enzyme isoforms in Bacillus subtilis. J. Bacteriol. 188:4727-4736.
    • (2006) J. Bacteriol , vol.188 , pp. 4727-4736
    • Lerondel, G.1    Doan, T.2    Zamboni, N.3    Sauer, U.4    Aymerich, S.5
  • 28
    • 33750823998 scopus 로고    scopus 로고
    • Transcriptional repressor CcpN from Bacillus subtilis compensates asymmetric contact distribution by cooperative binding
    • Licht, A., and S. Brantl. 2006. Transcriptional repressor CcpN from Bacillus subtilis compensates asymmetric contact distribution by cooperative binding. J. Mol. Biol. 364:434-448.
    • (2006) J. Mol. Biol , vol.364 , pp. 434-448
    • Licht, A.1    Brantl, S.2
  • 29
    • 26244461596 scopus 로고    scopus 로고
    • Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis
    • Licht, A., S. Preis, and S. Brantl. 2005. Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis. Mol. Microbiol. 58:189-206.
    • (2005) Mol. Microbiol , vol.58 , pp. 189-206
    • Licht, A.1    Preis, S.2    Brantl, S.3
  • 30
    • 27744560433 scopus 로고    scopus 로고
    • Lorca, G. L., Y. J. Chung, R. D. Barabote, W. Weyler, C. H. Schilling, and M. H. Saier, Jr. 2005. Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK. 3. Bacteriol. 187:7826-7839.
    • Lorca, G. L., Y. J. Chung, R. D. Barabote, W. Weyler, C. H. Schilling, and M. H. Saier, Jr. 2005. Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK. 3. Bacteriol. 187:7826-7839.
  • 31
    • 0034910795 scopus 로고    scopus 로고
    • Transcription of glycolytic genes and operons in Bacillus subtilis: Evidence for the presence of multiple levels of control of the gapA operon
    • Ludwig, H., G. Homuth, M. Schmalisch, F. M. Dyka, M. Hecker, and J. Stulke. 2001. Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon. Mol. Microbiol. 41:409-422.
    • (2001) Mol. Microbiol , vol.41 , pp. 409-422
    • Ludwig, H.1    Homuth, G.2    Schmalisch, M.3    Dyka, F.M.4    Hecker, M.5    Stulke, J.6
  • 32
    • 0035103809 scopus 로고    scopus 로고
    • Moreno, M. S., B. L. Schneider, R. R. Maile, W. Weyler, and M. H. Saier, Jr. 2001. Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol. Microbiol. 39:1366-1381.
    • Moreno, M. S., B. L. Schneider, R. R. Maile, W. Weyler, and M. H. Saier, Jr. 2001. Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol. Microbiol. 39:1366-1381.
  • 33
    • 0015235072 scopus 로고
    • Physiological functions of NAD- and NADP-linked malic enzymes in Escherichia coli
    • Murai, T., M. Tokushige, J. Nagai, and H. Katsuki. 1971. Physiological functions of NAD- and NADP-linked malic enzymes in Escherichia coli. Biochem. Biophys. Res. Commun. 43:875-881.
    • (1971) Biochem. Biophys. Res. Commun , vol.43 , pp. 875-881
    • Murai, T.1    Tokushige, M.2    Nagai, J.3    Katsuki, H.4
  • 34
    • 0000757170 scopus 로고
    • Biosynthesis of the aspartate family of amino acids
    • A. L. Sonenshein, J. A. Hoch, and R. Losick ed, American Society for Microbiology, Washington, DC
    • Paulus, H. 1993. Biosynthesis of the aspartate family of amino acids, p. 237-267. In A. L. Sonenshein, J. A. Hoch, and R. Losick (ed.), Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology, Washington, DC.
    • (1993) Bacillus subtilis and other gram-positive bacteria , pp. 237-267
    • Paulus, H.1
  • 35
    • 33846061120 scopus 로고    scopus 로고
    • Metabolic networks in motion: 13C-based flux analysis
    • Sauer, U. 2006. Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2:62.
    • (2006) Mol. Syst. Biol , vol.2 , pp. 62
    • Sauer, U.1
  • 36
    • 17644375240 scopus 로고    scopus 로고
    • The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria
    • Sauer, U., and B. J. Eikmanns. 2005. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol. Rev. 29:765-794.
    • (2005) FEMS Microbiol. Rev , vol.29 , pp. 765-794
    • Sauer, U.1    Eikmanns, B.J.2
  • 37
    • 14844295003 scopus 로고    scopus 로고
    • CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes
    • Servant, P., D. Le Coq, and S. Aymerich. 2005. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Mol. Microbiol. 55:1435-1451.
    • (2005) Mol. Microbiol , vol.55 , pp. 1435-1451
    • Servant, P.1    Le Coq, D.2    Aymerich, S.3
  • 38
    • 36248971737 scopus 로고    scopus 로고
    • Control of key metabolic intersections in Bacillus subtilis
    • Sonenshein, A. L. 2007. Control of key metabolic intersections in Bacillus subtilis. Nat. Rev. Microbiol. 5:917-927.
    • (2007) Nat. Rev. Microbiol , vol.5 , pp. 917-927
    • Sonenshein, A.L.1
  • 39
    • 0033118267 scopus 로고    scopus 로고
    • Carbon catabolite repression in bacteria
    • Stülke, J., and W. Hillen. 1999. Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2:195-201.
    • (1999) Curr. Opin. Microbiol , vol.2 , pp. 195-201
    • Stülke, J.1    Hillen, W.2
  • 40
    • 0025911849 scopus 로고
    • Thermostable aspartate aminotransferase from a thermophilic Bacillus species: Gene cloning, sequence determination, and preliminary X-ray characterization
    • Sung, M. H., K. Tanizawa, H. Tanaka, S. Kuramitsu, H. Kagamiyama, K. Hirotsu, A. Okamoto, T. Higuchi, and K. Soda. 1991. Thermostable aspartate aminotransferase from a thermophilic Bacillus species: gene cloning, sequence determination, and preliminary X-ray characterization. J. Biol. Chem. 266:2567-2572.
    • (1991) J. Biol. Chem , vol.266 , pp. 2567-2572
    • Sung, M.H.1    Tanizawa, K.2    Tanaka, H.3    Kuramitsu, S.4    Kagamiyama, H.5    Hirotsu, K.6    Okamoto, A.7    Higuchi, T.8    Soda, K.9
  • 41
    • 0348109341 scopus 로고    scopus 로고
    • CcpA-dependent carbon catabolite repression in bacteria
    • Warner, J. B., and J. S. Lolkema. 2003. CcpA-dependent carbon catabolite repression in bacteria. Microbiol. Mol. Biol. Rev. 67:475-490.
    • (2003) Microbiol. Mol. Biol. Rev , vol.67 , pp. 475-490
    • Warner, J.B.1    Lolkema, J.S.2
  • 42
    • 33845958976 scopus 로고    scopus 로고
    • A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae
    • Westergaard, S. L., A. P. Oliveira, C. Bro, L. Olsson, and J. Nielsen. 2007. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol. Bioeng. 96:134-145.
    • (2007) Biotechnol. Bioeng , vol.96 , pp. 134-145
    • Westergaard, S.L.1    Oliveira, A.P.2    Bro, C.3    Olsson, L.4    Nielsen, J.5
  • 45
    • 0642369576 scopus 로고    scopus 로고
    • 3 oxidase reduces TCA cycle fluxes in Bacillus subtilis
    • 3 oxidase reduces TCA cycle fluxes in Bacillus subtilis. FEMS Microbiol. Lett. 226:121-126.
    • (2003) FEMS Microbiol. Lett , vol.226 , pp. 121-126
    • Zamboni, N.1    Sauer, U.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.