메뉴 건너뛰기




Volumn 11, Issue 6, 2007, Pages 627-650

Efficient instance-based learning on data streams

Author keywords

Classification; Concept drift; Data streams; Instance based learning

Indexed keywords


EID: 51349124012     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2007-11604     Document Type: Article
Times cited : (60)

References (57)
  • 1
    • 36849095249 scopus 로고    scopus 로고
    • C.C. Aggarwal editor, Springer-Verlag, Berlin
    • C.C. Aggarwal (editor), Data Streams: Models and Algorithms, Springer-Verlag, Berlin, 2006.
    • (2006) Data Streams: Models and Algorithms
  • 3
    • 0004267735 scopus 로고    scopus 로고
    • D.W. Aha, editor, Kluwer Academic Publ
    • D.W. Aha, editor, Lazy Learning. Kluwer Academic Publ., 1997.
    • (1997) Lazy Learning
  • 4
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • D.W. Aha, D. Kibler and M.K. Albert, Instance-based learning algorithms, Machine Learning 6(1) (1991), 37-66.
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 14
    • 0003555184 scopus 로고
    • Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques
    • B.V. Dasarathy, editor, Los Alamitos, California
    • B.V. Dasarathy, editor, Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos, California, 1991.
    • (1991) IEEE Computer Society Press
  • 16
    • 84938057127 scopus 로고    scopus 로고
    • Estimating rarity and similarity over data stream windows
    • Springer
    • M. Datar and S. Muthukrishnan, Estimating rarity and similarity over data stream windows. In Algorithms - ESA 2002, Springer, 2002, 323-334.
    • (2002) Algorithms - ESA 2002 , pp. 323-334
    • Datar, M.1    Muthukrishnan, S.2
  • 17
    • 51349107238 scopus 로고    scopus 로고
    • P. Domingos, Rule induction and instance-based learning: A unified approach, in: Proceedings IJCAI-95, 14th International Joint Conference on Artificial Intelligence, C.S. Mellish, ed., Montreal, Morgan Kaufmann, 1995, pp. 1226-1232.
    • P. Domingos, Rule induction and instance-based learning: A unified approach, in: Proceedings IJCAI-95, 14th International Joint Conference on Artificial Intelligence, C.S. Mellish, ed., Montreal, Morgan Kaufmann, 1995, pp. 1226-1232.
  • 18
    • 0030216565 scopus 로고    scopus 로고
    • Unifying instance-based and rule-based induction
    • P. Domingos, Unifying instance-based and rule-based induction, Machine Learning 24 (1996), 141-168.
    • (1996) Machine Learning , vol.24 , pp. 141-168
    • Domingos, P.1
  • 30
    • 10044238664 scopus 로고    scopus 로고
    • Mining frequent patterns in data streams at multiple time granularities
    • H. Kargupta, A. Joshi, K. Sivakumar and Y. Yesha, eds, AAAI/MIT
    • C. Giannella, J. Han, J. Peia, X. Yan and P.S. Yu, Mining frequent patterns in data streams at multiple time granularities, in: Next Generation Data Mining, H. Kargupta, A. Joshi, K. Sivakumar and Y. Yesha, eds, AAAI/MIT, 2003.
    • (2003) Next Generation Data Mining
    • Giannella, C.1    Han, J.2    Peia, J.3    Yan, X.4    Yu, P.S.5
  • 31
    • 2442617843 scopus 로고    scopus 로고
    • Issues in data stream management
    • L. Golab and M. Tamer, Issues in data stream management, SIGMOD Rec 32(2) (2003), 5-14.
    • (2003) SIGMOD Rec , vol.32 , Issue.2 , pp. 5-14
    • Golab, L.1    Tamer, M.2
  • 33
    • 0002896413 scopus 로고
    • Tracking drifting concepts by minimizing disagreements
    • D.P. Helmhold and P.M. Long, Tracking drifting concepts by minimizing disagreements, Machine Learning 14 (1994), 27-45.
    • (1994) Machine Learning , vol.14 , pp. 27-45
    • Helmhold, D.P.1    Long, P.M.2
  • 35
    • 0242709395 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: A survey and empirical demonstration
    • Edmonton, Alberta, Canada, July
    • E. Keogh and S. Kasetty, On the need for time series data mining benchmarks: A survey and empirical demonstration. In 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, July 2002, 102-111.
    • (2002) 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 102-111
    • Keogh, E.1    Kasetty, S.2
  • 39
    • 37249039122 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift
    • Technical Report CSTR-20030610-3, Department of Computer Science, Georgetown University, Washington, DC, June
    • J.Z. Kolter and M.A. Maloof, Dynamic weighted majority: A new ensemble method for tracking concept drift. Technical Report CSTR-20030610-3, Department of Computer Science, Georgetown University, Washington, DC, June 2003.
    • (2003)
    • Kolter, J.Z.1    Maloof, M.A.2
  • 42
    • 1242310003 scopus 로고    scopus 로고
    • Incremental learning with partial instance memory
    • M.A. Maloof and R.S. Michalski, Incremental learning with partial instance memory, Artificial Intelligence 154 (2004), 95-126.
    • (2004) Artificial Intelligence , vol.154 , pp. 95-126
    • Maloof, M.A.1    Michalski, R.S.2
  • 43
    • 0042644651 scopus 로고    scopus 로고
    • Competence-guided editing methods for lazy learning
    • E. McKenna and B. Smyth, Competence-guided editing methods for lazy learning. In ECAI, 2000, 60-64.
    • (2000) ECAI , pp. 60-64
    • McKenna, E.1    Smyth, B.2
  • 46
    • 0031070068 scopus 로고    scopus 로고
    • Tolerating concept and sampling shift in lazy learning using prediction error context switching
    • M. Salganicoff, Tolerating concept and sampling shift in lazy learning using prediction error context switching, Artif Intell Rev 11 (1-5) (1997), 133-155.
    • (1997) Artif Intell Rev , vol.11 , Issue.1-5 , pp. 133-155
    • Salganicoff, M.1
  • 47
    • 0026156490 scopus 로고
    • A nearest hyperrectangle learning method
    • S. Salzberg, A nearest hyperrectangle learning method, Machine Learning 6 (1991), 251-276.
    • (1991) Machine Learning , vol.6 , pp. 251-276
    • Salzberg, S.1
  • 48
    • 0010012318 scopus 로고    scopus 로고
    • J.C. Schlimmer and Jr. R.H. Granger, Incremental learning from noisy data, Mach Learn 1(3) (1986), 317-354.
    • J.C. Schlimmer and Jr. R.H. Granger, Incremental learning from noisy data, Mach Learn 1(3) (1986), 317-354.
  • 50
    • 22544451786 scopus 로고    scopus 로고
    • Learning concept drift with a committee of decision trees
    • Technical Report AI-TR-03-302, Department of Computer Science, University of Texas at Austin, USA
    • K.O. Stanley, Learning concept drift with a committee of decision trees. Technical Report AI-TR-03-302, Department of Computer Science, University of Texas at Austin, USA, 2003.
    • (2003)
    • Stanley, K.O.1
  • 51
    • 26444562687 scopus 로고    scopus 로고
    • The problem of concept drift: Definitions and related work
    • Technical Report TCD-CS-2004-15, Department of Computer Science, Trinity College Dublin, Ireland
    • A. Tsymbal, The problem of concept drift: Definitions and related work. Technical Report TCD-CS-2004-15, Department of Computer Science, Trinity College Dublin, Ireland, 2004.
    • (2004)
    • Tsymbal, A.1
  • 52
    • 77952642202 scopus 로고
    • Incremental induction of decision trees
    • P.E. Utgoff, Incremental induction of decision trees, Machine Learning 4 (1989), 161-186.
    • (1989) Machine Learning , vol.4 , pp. 161-186
    • Utgoff, P.E.1
  • 55
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat, Learning in the presence of concept drift and hidden contexts, Mach Learn 23(1) (1996), 69-101.
    • (1996) Mach Learn , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 57
    • 0141637082 scopus 로고    scopus 로고
    • Statstream: Statistical monitoring of thousands of data streams in real time
    • Hong Kong, China
    • Y. Zhu and D. Shasha, Statstream: Statistical monitoring of thousands of data streams in real time. In Proc. 28th VLDB Conference, Hong Kong, China, 2002, 358-369.
    • (2002) Proc. 28th VLDB Conference , pp. 358-369
    • Zhu, Y.1    Shasha, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.