-
1
-
-
36849095249
-
-
C.C. Aggarwal editor, Springer-Verlag, Berlin
-
C.C. Aggarwal (editor), Data Streams: Models and Algorithms, Springer-Verlag, Berlin, 2006.
-
(2006)
Data Streams: Models and Algorithms
-
-
-
2
-
-
85012236181
-
A framework for clustering evolving data streams
-
Berlin, Germany
-
C.C. Aggarwal, J. Han, J. Wang and P.S. Yu, A framework for clustering evolving data streams. In Proc. VLDB, Int. Conf. on Very Large Data Bases, Berlin, Germany, 2003.
-
(2003)
Proc. VLDB, Int. Conf. on Very Large Data Bases
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
3
-
-
0004267735
-
-
D.W. Aha, editor, Kluwer Academic Publ
-
D.W. Aha, editor, Lazy Learning. Kluwer Academic Publ., 1997.
-
(1997)
Lazy Learning
-
-
-
4
-
-
0025725905
-
Instance-based learning algorithms
-
D.W. Aha, D. Kibler and M.K. Albert, Instance-based learning algorithms, Machine Learning 6(1) (1991), 37-66.
-
(1991)
Machine Learning
, vol.6
, Issue.1
, pp. 37-66
-
-
Aha, D.W.1
Kibler, D.2
Albert, M.K.3
-
5
-
-
0036042175
-
Models and issues in data stream systems
-
Madison, Wisconsin, USA, ACM
-
B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom, Models and issues in data stream systems. In Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 3-5, Madison, Wisconsin, USA, ACM, 2002, 1-16.
-
(2002)
Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 3-5
, pp. 1-16
-
-
Babcock, B.1
Babu, S.2
Datar, M.3
Motwani, R.4
Widom, J.5
-
7
-
-
84944312187
-
XXL - a library approach to supporting effcient implementations of advanced database queries
-
J. Bercken, B. Blohsfeld, J. Dittrich, J. Krämer, T. Schäfer, M. Schneider and B. Seeger, XXL - a library approach to supporting effcient implementations of advanced database queries. In Proceedings of the VLDB, 2001, 39-48.
-
(2001)
Proceedings of the VLDB
, pp. 39-48
-
-
Bercken, J.1
Blohsfeld, B.2
Dittrich, J.3
Krämer, J.4
Schäfer, T.5
Schneider, M.6
Seeger, B.7
-
8
-
-
33645629583
-
Scalable distributed stream processing
-
Asilomar, CA
-
M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing and S. Zdonik, Scalable distributed stream processing. In Proceedings CIDR-03: FirstBiennial Conference on Innovative Database Systems, Asilomar, CA, 2003.
-
(2003)
Proceedings CIDR-03: FirstBiennial Conference on Innovative Database Systems
-
-
Cherniack, M.1
Balakrishnan, H.2
Balazinska, M.3
Carney, D.4
Cetintemel, U.5
Xing, Y.6
Zdonik, S.7
-
9
-
-
1642300586
-
Indexing metric spaces with M-tree
-
Matteo Cristiani and Letizia Tanca, editors, Verona, Italy, June
-
P. Ciaccia, M. Patella, F. Rabitti and P. Zezula, Indexing metric spaces with M-tree. In Matteo Cristiani and Letizia Tanca, editors, Atti del Quinto Convegno Nazionale su Sistemi Evoluti per Basi di Dati (SEBD'97) Verona, Italy, June 1997, 67-86.
-
(1997)
Atti del Quinto Convegno Nazionale su Sistemi Evoluti per Basi di Dati (SEBD'97)
, pp. 67-86
-
-
Ciaccia, P.1
Patella, M.2
Rabitti, F.3
Zezula, P.4
-
14
-
-
0003555184
-
Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques
-
B.V. Dasarathy, editor, Los Alamitos, California
-
B.V. Dasarathy, editor, Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos, California, 1991.
-
(1991)
IEEE Computer Society Press
-
-
-
16
-
-
84938057127
-
Estimating rarity and similarity over data stream windows
-
Springer
-
M. Datar and S. Muthukrishnan, Estimating rarity and similarity over data stream windows. In Algorithms - ESA 2002, Springer, 2002, 323-334.
-
(2002)
Algorithms - ESA 2002
, pp. 323-334
-
-
Datar, M.1
Muthukrishnan, S.2
-
17
-
-
51349107238
-
-
P. Domingos, Rule induction and instance-based learning: A unified approach, in: Proceedings IJCAI-95, 14th International Joint Conference on Artificial Intelligence, C.S. Mellish, ed., Montreal, Morgan Kaufmann, 1995, pp. 1226-1232.
-
P. Domingos, Rule induction and instance-based learning: A unified approach, in: Proceedings IJCAI-95, 14th International Joint Conference on Artificial Intelligence, C.S. Mellish, ed., Montreal, Morgan Kaufmann, 1995, pp. 1226-1232.
-
-
-
-
18
-
-
0030216565
-
Unifying instance-based and rule-based induction
-
P. Domingos, Unifying instance-based and rule-based induction, Machine Learning 24 (1996), 141-168.
-
(1996)
Machine Learning
, vol.24
, pp. 141-168
-
-
Domingos, P.1
-
22
-
-
33751065910
-
Data streams classification by incremental rule learning with parameterized generalization
-
Dijon, France
-
F. Ferrer-Troyano, J.S. Aguilar-Ruiz and J.C. Riquelme, Data streams classification by incremental rule learning with parameterized generalization. In Proceedings of the 2006 ACM Symposium on Applied computing, Dijon, France, 2006, 657-661.
-
(2006)
Proceedings of the 2006 ACM Symposium on Applied computing
, pp. 657-661
-
-
Ferrer-Troyano, F.1
Aguilar-Ruiz, J.S.2
Riquelme, J.C.3
-
23
-
-
33644551188
-
Incremental rule learning based on example nearness from numerical data streams
-
Santa Fe, New Mexico, USA
-
F. Ferrer-Troyano, J.S. Aguilar-Ruiz and J.C. Riquelme, Incremental rule learning based on example nearness from numerical data streams. In Proceedings of the 2005 ACM Symposium on Applied computing, Santa Fe, New Mexico, USA, 2005, 568-572.
-
(2005)
Proceedings of the 2005 ACM Symposium on Applied computing
, pp. 568-572
-
-
Ferrer-Troyano, F.1
Aguilar-Ruiz, J.S.2
Riquelme, J.C.3
-
24
-
-
2442503694
-
Discovering decision rules from numerical data streams
-
Nicosia, Cyprus
-
F. Ferrer-Troyano, J.S. Aguilar-Ruiz and J.C. Riquelme, Discovering decision rules from numerical data streams. In Proceedings of the 2004 ACM Symposium on Applied computing, Nicosia, Cyprus, 2004, 649-653.
-
(2004)
Proceedings of the 2004 ACM Symposium on Applied computing
, pp. 649-653
-
-
Ferrer-Troyano, F.1
Aguilar-Ruiz, J.S.2
Riquelme, J.C.3
-
26
-
-
33845389929
-
Cost-efficient mining techniques for data streams
-
Australian Computer Society, Inc
-
M.M. Gaber, S. Krishnaswamy and A. Zaslavsky, Cost-efficient mining techniques for data streams. In Proceedings of the 2nd Workshop on Australasian Information Security, Data Mining and Web Intelligence, and Software Internationalisation, Australian Computer Society, Inc., 2004, 109-114.
-
(2004)
Proceedings of the 2nd Workshop on Australasian Information Security, Data Mining and Web Intelligence, and Software Internationalisation
, pp. 109-114
-
-
Gaber, M.M.1
Krishnaswamy, S.2
Zaslavsky, A.3
-
27
-
-
33749618778
-
Learning with drift detection
-
J. Gama, P. Medas, G. Castillo and P. Rodrigues, Learning with drift detection. In Proc. SBIA-04, 2004, 286-295.
-
(2004)
Proc. SBIA-04
, pp. 286-295
-
-
Gama, J.1
Medas, P.2
Castillo, G.3
Rodrigues, P.4
-
28
-
-
33644537898
-
Learning decision trees from dynamic data streams
-
New York, NY, USA, ACM Press
-
J. Gama, P. Medas and P. Rodrigues, Learning decision trees from dynamic data streams. In SAC '05: Proceedings of the 2005 ACM symposium on Applied computing, New York, NY, USA, ACM Press, 2005, 573-577.
-
(2005)
SAC '05: Proceedings of the 2005 ACM symposium on Applied computing
, pp. 573-577
-
-
Gama, J.1
Medas, P.2
Rodrigues, P.3
-
30
-
-
10044238664
-
Mining frequent patterns in data streams at multiple time granularities
-
H. Kargupta, A. Joshi, K. Sivakumar and Y. Yesha, eds, AAAI/MIT
-
C. Giannella, J. Han, J. Peia, X. Yan and P.S. Yu, Mining frequent patterns in data streams at multiple time granularities, in: Next Generation Data Mining, H. Kargupta, A. Joshi, K. Sivakumar and Y. Yesha, eds, AAAI/MIT, 2003.
-
(2003)
Next Generation Data Mining
-
-
Giannella, C.1
Han, J.2
Peia, J.3
Yan, X.4
Yu, P.S.5
-
31
-
-
2442617843
-
Issues in data stream management
-
L. Golab and M. Tamer, Issues in data stream management, SIGMOD Rec 32(2) (2003), 5-14.
-
(2003)
SIGMOD Rec
, vol.32
, Issue.2
, pp. 5-14
-
-
Golab, L.1
Tamer, M.2
-
32
-
-
0034514004
-
Clustering data streams
-
S. Guha, N. Mishra, R. Motwani and L. O'Callaghan, Clustering data streams. In IEEE Symposium on Foundations of Computer Science, 2000, 359-366.
-
(2000)
IEEE Symposium on Foundations of Computer Science
, pp. 359-366
-
-
Guha, S.1
Mishra, N.2
Motwani, R.3
O'Callaghan, L.4
-
33
-
-
0002896413
-
Tracking drifting concepts by minimizing disagreements
-
D.P. Helmhold and P.M. Long, Tracking drifting concepts by minimizing disagreements, Machine Learning 14 (1994), 27-45.
-
(1994)
Machine Learning
, vol.14
, pp. 27-45
-
-
Helmhold, D.P.1
Long, P.M.2
-
35
-
-
0242709395
-
On the need for time series data mining benchmarks: A survey and empirical demonstration
-
Edmonton, Alberta, Canada, July
-
E. Keogh and S. Kasetty, On the need for time series data mining benchmarks: A survey and empirical demonstration. In 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, July 2002, 102-111.
-
(2002)
8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 102-111
-
-
Keogh, E.1
Kasetty, S.2
-
36
-
-
0141804082
-
Detecting concept drift with support vector machines
-
San Francisco, CA
-
R. Klinkenberg and T. Joachims, Detecting concept drift with support vector machines. In Proc. ICML, 17th Int. Conf. on Machine Learning San Francisco, CA, 2000, 487-494.
-
(2000)
Proc. ICML, 17th Int. Conf. on Machine Learning
, pp. 487-494
-
-
Klinkenberg, R.1
Joachims, T.2
-
39
-
-
37249039122
-
Dynamic weighted majority: A new ensemble method for tracking concept drift
-
Technical Report CSTR-20030610-3, Department of Computer Science, Georgetown University, Washington, DC, June
-
J.Z. Kolter and M.A. Maloof, Dynamic weighted majority: A new ensemble method for tracking concept drift. Technical Report CSTR-20030610-3, Department of Computer Science, Georgetown University, Washington, DC, June 2003.
-
(2003)
-
-
Kolter, J.Z.1
Maloof, M.A.2
-
42
-
-
1242310003
-
Incremental learning with partial instance memory
-
M.A. Maloof and R.S. Michalski, Incremental learning with partial instance memory, Artificial Intelligence 154 (2004), 95-126.
-
(2004)
Artificial Intelligence
, vol.154
, pp. 95-126
-
-
Maloof, M.A.1
Michalski, R.S.2
-
43
-
-
0042644651
-
Competence-guided editing methods for lazy learning
-
E. McKenna and B. Smyth, Competence-guided editing methods for lazy learning. In ECAI, 2000, 60-64.
-
(2000)
ECAI
, pp. 60-64
-
-
McKenna, E.1
Smyth, B.2
-
44
-
-
51349151492
-
-
L. O'Callaghan, N. Mishra, A. Meyerson, S. Guha and R. Motwani, Streaming-data algorithms for high-quality clustering, 2002.
-
(2002)
Streaming-data algorithms for high-quality clustering
-
-
O'Callaghan, L.1
Mishra, N.2
Meyerson, A.3
Guha, S.4
Motwani, R.5
-
46
-
-
0031070068
-
Tolerating concept and sampling shift in lazy learning using prediction error context switching
-
M. Salganicoff, Tolerating concept and sampling shift in lazy learning using prediction error context switching, Artif Intell Rev 11 (1-5) (1997), 133-155.
-
(1997)
Artif Intell Rev
, vol.11
, Issue.1-5
, pp. 133-155
-
-
Salganicoff, M.1
-
47
-
-
0026156490
-
A nearest hyperrectangle learning method
-
S. Salzberg, A nearest hyperrectangle learning method, Machine Learning 6 (1991), 251-276.
-
(1991)
Machine Learning
, vol.6
, pp. 251-276
-
-
Salzberg, S.1
-
48
-
-
0010012318
-
-
J.C. Schlimmer and Jr. R.H. Granger, Incremental learning from noisy data, Mach Learn 1(3) (1986), 317-354.
-
J.C. Schlimmer and Jr. R.H. Granger, Incremental learning from noisy data, Mach Learn 1(3) (1986), 317-354.
-
-
-
-
50
-
-
22544451786
-
Learning concept drift with a committee of decision trees
-
Technical Report AI-TR-03-302, Department of Computer Science, University of Texas at Austin, USA
-
K.O. Stanley, Learning concept drift with a committee of decision trees. Technical Report AI-TR-03-302, Department of Computer Science, University of Texas at Austin, USA, 2003.
-
(2003)
-
-
Stanley, K.O.1
-
51
-
-
26444562687
-
The problem of concept drift: Definitions and related work
-
Technical Report TCD-CS-2004-15, Department of Computer Science, Trinity College Dublin, Ireland
-
A. Tsymbal, The problem of concept drift: Definitions and related work. Technical Report TCD-CS-2004-15, Department of Computer Science, Trinity College Dublin, Ireland, 2004.
-
(2004)
-
-
Tsymbal, A.1
-
52
-
-
77952642202
-
Incremental induction of decision trees
-
P.E. Utgoff, Incremental induction of decision trees, Machine Learning 4 (1989), 161-186.
-
(1989)
Machine Learning
, vol.4
, pp. 161-186
-
-
Utgoff, P.E.1
-
53
-
-
77952415079
-
Mining concept-driffing data streams using ensemble classifiers
-
ACM Press
-
H. Wang, W. Fan, P.S. Yu and J. Han, Mining concept-driffing data streams using ensemble classifiers. In KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM Press, 2003, 226-235.
-
(2003)
KDD '03: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
54
-
-
85019720843
-
Effective learning in dynamic environments by explicit context tracking
-
Springer-Verlag
-
G. Widmer and M. Kubat, Effective learning in dynamic environments by explicit context tracking. In Machine Learning: ECML-93, European Conference on Machine Learning, Proceedings, volume 667, Springer-Verlag, 1993, 227-243.
-
(1993)
Machine Learning: ECML-93, European Conference on Machine Learning, Proceedings
, vol.667
, pp. 227-243
-
-
Widmer, G.1
Kubat, M.2
-
55
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat, Learning in the presence of concept drift and hidden contexts, Mach Learn 23(1) (1996), 69-101.
-
(1996)
Mach Learn
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
57
-
-
0141637082
-
Statstream: Statistical monitoring of thousands of data streams in real time
-
Hong Kong, China
-
Y. Zhu and D. Shasha, Statstream: Statistical monitoring of thousands of data streams in real time. In Proc. 28th VLDB Conference, Hong Kong, China, 2002, 358-369.
-
(2002)
Proc. 28th VLDB Conference
, pp. 358-369
-
-
Zhu, Y.1
Shasha, D.2
|