메뉴 건너뛰기




Volumn 35, Issue 2, 2007, Pages 870-887

When do stepwise algorithms meet subset selection criteria

Author keywords

Concurrent optimal subset; Convex optimization; Model selection; Stepwise algorithms; Subset selection

Indexed keywords


EID: 49749140446     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/009053606000001334     Document Type: Article
Times cited : (26)

References (51)
  • 1
    • 49749088629 scopus 로고    scopus 로고
    • AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (B. N. Petrov and F. Csáki, eds.) 267-281. Akadémiai Kiadó, Budapest. MR0483125
    • AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (B. N. Petrov and F. Csáki, eds.) 267-281. Akadémiai Kiadó, Budapest. MR0483125
  • 3
    • 0003958737 scopus 로고
    • Ph.D. dissertation, Dept. Statistics, Stanford Univ
    • CHEN, S. S. (1995). Basis pursuit. Ph.D. dissertation, Dept. Statistics, Stanford Univ.
    • (1995) Basis pursuit
    • CHEN, S.S.1
  • 5
    • 0035273106 scopus 로고    scopus 로고
    • Reprinted at SIAM Rev. 43 (2001) 129-159. MR1639094, MR1854649
    • Reprinted at SIAM Rev. 43 (2001) 129-159. MR1639094, MR1854649
  • 6
    • 0039439070 scopus 로고    scopus 로고
    • Some remarks on greedy algorithms
    • MR1399379
    • DEVORE, R. A. and TEMLYAKOV, V. N. (1996). Some remarks on greedy algorithms. Adv. Comput. Math. 5 173-187. MR1399379
    • (1996) Adv. Comput. Math , vol.5 , pp. 173-187
    • DEVORE, R.A.1    TEMLYAKOV, V.N.2
  • 8
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presense of noise
    • MR2237332
    • DONOHO, D. L., ELAD, M. and TEMLYAKOV, V. N. (2006). Stable recovery of sparse overcomplete representations in the presense of noise. IEEE Trans. Inform. Theory 52 6-18. MR2237332
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 6-18
    • DONOHO, D.L.1    ELAD, M.2    TEMLYAKOV, V.N.3
  • 9
    • 0035504028 scopus 로고    scopus 로고
    • Uncertainty principles and ideal atomic decomposition
    • MR1872845
    • DONOHO, D. L. and Huo, X. (2001). Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47 2845-2862. MR1872845
    • (2001) IEEE Trans. Inform. Theory , vol.47 , pp. 2845-2862
    • DONOHO, D.L.1    Huo, X.2
  • 10
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • MR1379464
    • DONOHO, D. L. and JOHNSTONE, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 1200-1224. MR1379464
    • (1995) J. Amer. Statist. Assoc , vol.90 , pp. 1200-1224
    • DONOHO, D.L.1    JOHNSTONE, I.M.2
  • 11
    • 3242708140 scopus 로고    scopus 로고
    • Least angle regression (with discussion)
    • MR2060166
    • EFRON, B., HASTIE, T., JOHNSTONE, I. and TIBSHIRANI, R. (2004). Least angle regression (with discussion). Ann. Statist. 32 407-499. MR2060166
    • (2004) Ann. Statist , vol.32 , pp. 407-499
    • EFRON, B.1    HASTIE, T.2    JOHNSTONE, I.3    TIBSHIRANI, R.4
  • 12
    • 0036714214 scopus 로고    scopus 로고
    • A generalized uncertainty principle and sparse representation in pairs of bases
    • MR1929464
    • ELAD, M. and BRUCKSTEIN, A. M. (2002). A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory 48 2558-2567. MR1929464
    • (2002) IEEE Trans. Inform. Theory , vol.48 , pp. 2558-2567
    • ELAD, M.1    BRUCKSTEIN, A.M.2
  • 13
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconvave penalized likelihood and its oracle properties
    • MR1946581
    • FAN, J. and LI, R. (2001). Variable selection via nonconvave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. MR1946581
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 1348-1360
    • FAN, J.1    LI, R.2
  • 14
    • 84878031768 scopus 로고    scopus 로고
    • FAN, J. and LI, R. (2006). Statistical challenges with high dimensionality: Feature selection in knowledge discovery. In International Congress of Mathematicians 3 595-622. European Math. Soc., Zürich. MR2275698
    • FAN, J. and LI, R. (2006). Statistical challenges with high dimensionality: Feature selection in knowledge discovery. In International Congress of Mathematicians 3 595-622. European Math. Soc., Zürich. MR2275698
  • 15
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • MR2065194
    • FAN, J. and PENG, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32 928-961. MR2065194
    • (2004) Ann. Statist , vol.32 , pp. 928-961
    • FAN, J.1    PENG, H.2
  • 16
    • 21844523862 scopus 로고
    • The risk inflation criterion for multiple regression
    • 1994
    • FOSTER, D. P. and GEORGE, E. I. (1994). The risk inflation criterion for multiple regression. Ann. Statist. 22 1947-1975. MR1329177
    • (1947) Ann. Statist , vol.22
    • FOSTER, D.P.1    GEORGE, E.I.2
  • 17
    • 2942640138 scopus 로고    scopus 로고
    • On sparse representations in arbitrary redundant bases
    • MR2094894
    • FUCHS, J.-J. (2004). On sparse representations in arbitrary redundant bases. IEEE Trans. Inform. Theory 50 1341-1344. MR2094894
    • (2004) IEEE Trans. Inform. Theory , vol.50 , pp. 1341-1344
    • FUCHS, J.-J.1
  • 18
    • 0016128505 scopus 로고
    • Regressions by leaps and bounds
    • FURNIVAL, G. and WILSON, R. (1974). Regressions by leaps and bounds. Technometrics 16 499-511.
    • (1974) Technometrics , vol.16 , pp. 499-511
    • FURNIVAL, G.1    WILSON, R.2
  • 19
    • 33645577251 scopus 로고    scopus 로고
    • Branch-and-bound algorithms for computing the best-subset regression models
    • MR2269366
    • GATU, C. and KONTOGHIORGHES, E. J. (2006). Branch-and-bound algorithms for computing the best-subset regression models. J. Comput. Graph. Statist. 15 139-156. MR2269366
    • (2006) J. Comput. Graph. Statist , vol.15 , pp. 139-156
    • GATU, C.1    KONTOGHIORGHES, E.J.2
  • 20
    • 0442309436 scopus 로고    scopus 로고
    • The variable selection problem
    • MR1825282
    • GEORGE, E. I. (2000). The variable selection problem. J. Amer. Statist. Assoc. 95 1304-1308. MR1825282
    • (2000) J. Amer. Statist. Assoc , vol.95 , pp. 1304-1308
    • GEORGE, E.I.1
  • 22
    • 49749098411 scopus 로고    scopus 로고
    • GOLUB, G. H. and VAN LOAN, C. F. (1996). Matrix Computations, 3rd ed. Johns Hopkins Univ. Press, Baltimore. MR1417720
    • GOLUB, G. H. and VAN LOAN, C. F. (1996). Matrix Computations, 3rd ed. Johns Hopkins Univ. Press, Baltimore. MR1417720
  • 23
    • 33646784371 scopus 로고    scopus 로고
    • GRIBONVAL, R., FIGUERAS I VENTURA, R. M. and VANDERGHEYNST, P. (2005). A simple test to check the optimality of sparse signal approximations. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'05) S 717-720. IEEE Press, Piscataway, NJ. Available at Its1pc19.epfl.ch/repository/Gribonval2005_1167.pdf. A longer version is available at ftp.iri.sa.fr/techreports/2004/PI-1661.pdf.
    • GRIBONVAL, R., FIGUERAS I VENTURA, R. M. and VANDERGHEYNST, P. (2005). A simple test to check the optimality of sparse signal approximations. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'05) S 717-720. IEEE Press, Piscataway, NJ. Available at Its1pc19.epfl.ch/repository/Gribonval2005_1167.pdf. A longer version is available at ftp.iri.sa.fr/techreports/2004/PI-1661.pdf.
  • 24
    • 0347968052 scopus 로고    scopus 로고
    • Sparse representations in unions of bases
    • MR2045813
    • GRIBONVAL, R. and NIELSEN, M. (2003). Sparse representations in unions of bases. IEEE Trans. Inform. Theory 49 3320-3325. MR2045813
    • (2003) IEEE Trans. Inform. Theory , vol.49 , pp. 3320-3325
    • GRIBONVAL, R.1    NIELSEN, M.2
  • 25
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • HASTIE, T., ROSSET, S., TIBSHIRANI, R. and ZHU, J. (2004). The entire regularization path for the support vector machine. J. Mack Learn. Res. 5 1391-1415.
    • (2004) J. Mack Learn. Res , vol.5 , pp. 1391-1415
    • HASTIE, T.1    ROSSET, S.2    TIBSHIRANI, R.3    ZHU, J.4
  • 26
    • 49749107496 scopus 로고    scopus 로고
    • HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York. MR1851606
    • HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York. MR1851606
  • 27
    • 49749099511 scopus 로고    scopus 로고
    • HUO, X. and NI, X. S. (2005). When do stepwise algorithms meet subset selection criteria? Technical report, Georgia Inst. Technology. Available at www2.isye.gatech.edu/statistics/papers/.
    • HUO, X. and NI, X. S. (2005). When do stepwise algorithms meet subset selection criteria? Technical report, Georgia Inst. Technology. Available at www2.isye.gatech.edu/statistics/papers/.
  • 29
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • KOHAVI, R. and JOHN, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence 97 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • KOHAVI, R.1    JOHN, G.H.2
  • 32
    • 49749147936 scopus 로고    scopus 로고
    • MILLER, A. J. (2002). Subset Selection in Regression, 2nd ed. Chapman and. Hall/CRC, Boca Raton, FL. MR2001193
    • MILLER, A. J. (2002). Subset Selection in Regression, 2nd ed. Chapman and. Hall/CRC, Boca Raton, FL. MR2001193
  • 33
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • NARENDRA, P. M. and FUKUNAGA, K. (1977). A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 26 917-922.
    • (1977) IEEE Trans. Comput , vol.26 , pp. 917-922
    • NARENDRA, P.M.1    FUKUNAGA, K.2
  • 34
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • MR1320206
    • NATARAJAN, B. K. (1995). Sparse approximate solutions to linear systems. SIAM J. Comput. 24 227-234. MR1320206
    • (1995) SIAM J. Comput , vol.24 , pp. 227-234
    • NATARAJAN, B.K.1
  • 37
    • 49749132230 scopus 로고    scopus 로고
    • NI, X. S. and HUO, X. (2006). Regressions by enhanced leaps-and-bounds via optimality tests (LBOT). Technical report, Georgia Inst. Technology. Available at www2.isye.gatech.edu/statistics/papers/.
    • NI, X. S. and HUO, X. (2006). Regressions by enhanced leaps-and-bounds via optimality tests (LBOT). Technical report, Georgia Inst. Technology. Available at www2.isye.gatech.edu/statistics/papers/.
  • 38
    • 49749114249 scopus 로고    scopus 로고
    • OSBORNE, M. R. (1985). Finite Algorithms in Optimization and Data Analysis. Wiley, Chichester. MR0817717
    • OSBORNE, M. R. (1985). Finite Algorithms in Optimization and Data Analysis. Wiley, Chichester. MR0817717
  • 40
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • MR1773265
    • OSBORNE, M. R., PRESNELL, B. and TURLACH, B. A. (2000). A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20 389-403. MR1773265
    • (2000) IMA J. Numer. Anal , vol.20 , pp. 389-403
    • OSBORNE, M.R.1    PRESNELL, B.2    TURLACH, B.A.3
  • 41
    • 13444291619 scopus 로고
    • Algorithm AS 233: An improved branch and bound algorithm for feature subset selection
    • RIDOUT, M. S. (1988). Algorithm AS 233: An improved branch and bound algorithm for feature subset selection. Appl. Statist. 37 139-147.
    • (1988) Appl. Statist , vol.37 , pp. 139-147
    • RIDOUT, M.S.1
  • 42
    • 0007967386 scopus 로고
    • Algorithm AS .199: A branch and bound algorithm for determining the optimal feature subset of given size
    • ROBERTS, S. J. (1984). Algorithm AS .199: A branch and bound algorithm for determining the optimal feature subset of given size. Appl. Statist. 33 236-241.
    • (1984) Appl. Statist , vol.33 , pp. 236-241
    • ROBERTS, S.J.1
  • 43
    • 49749140012 scopus 로고    scopus 로고
    • ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton Univ. Press. MR0274683
    • ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton Univ. Press. MR0274683
  • 44
    • 0008988926 scopus 로고
    • Linear inversion of band-limited reflection seismograms
    • MR0857796
    • SANTOSA, F. and SYMES, W. W. (1986). Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Statist. Comput. 7 1307-1330. MR0857796
    • (1986) SIAM J. Sci. Statist. Comput , vol.7 , pp. 1307-1330
    • SANTOSA, F.1    SYMES, W.W.2
  • 45
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • MR0468014
    • SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464. MR0468014
    • (1978) Ann. Statist , vol.6 , pp. 461-464
    • SCHWARZ, G.1
  • 46
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • MR1379242
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • TIBSHIRANI, R.1
  • 47
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • MR2097044
    • TROPP, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50 2231-2242. MR2097044
    • (2004) IEEE Trans. Inform. Theory , vol.50 , pp. 2231-2242
    • TROPP, J.A.1
  • 48
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for identifying sparse signals in noise
    • MR2238069
    • TROPP, J. A. (2006). Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52 1030-1051. MR2238069
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 1030-1051
    • TROPP, J.A.1
  • 49
    • 49749089592 scopus 로고    scopus 로고
    • TURLACH, B. A. (2004). Discussion of Least angle regression, by B. Efron, T. Hastie, I. Johnstone and R. Tibshirani. Ann. Statist. 32 481-490.
    • TURLACH, B. A. (2004). Discussion of "Least angle regression," by B. Efron, T. Hastie, I. Johnstone and R. Tibshirani. Ann. Statist. 32 481-490.
  • 50
    • 0000360923 scopus 로고
    • Construction of supersaturated designs through partially aliased interactions
    • MR1248029
    • Wu, C.-F. J. (1993). Construction of supersaturated designs through partially aliased interactions. Biometrika 80 661-669. MR1248029
    • (1993) Biometrika , vol.80 , pp. 661-669
    • Wu, C.-F.J.1
  • 51
    • 34548181170 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • Unpublished manuscript
    • ZOU, H. (2005). The adaptive Lasso and its oracle properties. Unpublished manuscript.
    • (2005)
    • ZOU, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.