-
1
-
-
49749088629
-
-
AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (B. N. Petrov and F. Csáki, eds.) 267-281. Akadémiai Kiadó, Budapest. MR0483125
-
AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (B. N. Petrov and F. Csáki, eds.) 267-281. Akadémiai Kiadó, Budapest. MR0483125
-
-
-
-
3
-
-
0003958737
-
-
Ph.D. dissertation, Dept. Statistics, Stanford Univ
-
CHEN, S. S. (1995). Basis pursuit. Ph.D. dissertation, Dept. Statistics, Stanford Univ.
-
(1995)
Basis pursuit
-
-
CHEN, S.S.1
-
5
-
-
0035273106
-
-
Reprinted at SIAM Rev. 43 (2001) 129-159. MR1639094, MR1854649
-
Reprinted at SIAM Rev. 43 (2001) 129-159. MR1639094, MR1854649
-
-
-
-
6
-
-
0039439070
-
Some remarks on greedy algorithms
-
MR1399379
-
DEVORE, R. A. and TEMLYAKOV, V. N. (1996). Some remarks on greedy algorithms. Adv. Comput. Math. 5 173-187. MR1399379
-
(1996)
Adv. Comput. Math
, vol.5
, pp. 173-187
-
-
DEVORE, R.A.1
TEMLYAKOV, V.N.2
-
8
-
-
33144483155
-
Stable recovery of sparse overcomplete representations in the presense of noise
-
MR2237332
-
DONOHO, D. L., ELAD, M. and TEMLYAKOV, V. N. (2006). Stable recovery of sparse overcomplete representations in the presense of noise. IEEE Trans. Inform. Theory 52 6-18. MR2237332
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, pp. 6-18
-
-
DONOHO, D.L.1
ELAD, M.2
TEMLYAKOV, V.N.3
-
9
-
-
0035504028
-
Uncertainty principles and ideal atomic decomposition
-
MR1872845
-
DONOHO, D. L. and Huo, X. (2001). Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47 2845-2862. MR1872845
-
(2001)
IEEE Trans. Inform. Theory
, vol.47
, pp. 2845-2862
-
-
DONOHO, D.L.1
Huo, X.2
-
10
-
-
84950459514
-
Adapting to unknown smoothness via wavelet shrinkage
-
MR1379464
-
DONOHO, D. L. and JOHNSTONE, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 1200-1224. MR1379464
-
(1995)
J. Amer. Statist. Assoc
, vol.90
, pp. 1200-1224
-
-
DONOHO, D.L.1
JOHNSTONE, I.M.2
-
11
-
-
3242708140
-
Least angle regression (with discussion)
-
MR2060166
-
EFRON, B., HASTIE, T., JOHNSTONE, I. and TIBSHIRANI, R. (2004). Least angle regression (with discussion). Ann. Statist. 32 407-499. MR2060166
-
(2004)
Ann. Statist
, vol.32
, pp. 407-499
-
-
EFRON, B.1
HASTIE, T.2
JOHNSTONE, I.3
TIBSHIRANI, R.4
-
12
-
-
0036714214
-
A generalized uncertainty principle and sparse representation in pairs of bases
-
MR1929464
-
ELAD, M. and BRUCKSTEIN, A. M. (2002). A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory 48 2558-2567. MR1929464
-
(2002)
IEEE Trans. Inform. Theory
, vol.48
, pp. 2558-2567
-
-
ELAD, M.1
BRUCKSTEIN, A.M.2
-
13
-
-
1542784498
-
Variable selection via nonconvave penalized likelihood and its oracle properties
-
MR1946581
-
FAN, J. and LI, R. (2001). Variable selection via nonconvave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. MR1946581
-
(2001)
J. Amer. Statist. Assoc
, vol.96
, pp. 1348-1360
-
-
FAN, J.1
LI, R.2
-
14
-
-
84878031768
-
-
FAN, J. and LI, R. (2006). Statistical challenges with high dimensionality: Feature selection in knowledge discovery. In International Congress of Mathematicians 3 595-622. European Math. Soc., Zürich. MR2275698
-
FAN, J. and LI, R. (2006). Statistical challenges with high dimensionality: Feature selection in knowledge discovery. In International Congress of Mathematicians 3 595-622. European Math. Soc., Zürich. MR2275698
-
-
-
-
15
-
-
24344502730
-
Nonconcave penalized likelihood with a diverging number of parameters
-
MR2065194
-
FAN, J. and PENG, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32 928-961. MR2065194
-
(2004)
Ann. Statist
, vol.32
, pp. 928-961
-
-
FAN, J.1
PENG, H.2
-
16
-
-
21844523862
-
The risk inflation criterion for multiple regression
-
1994
-
FOSTER, D. P. and GEORGE, E. I. (1994). The risk inflation criterion for multiple regression. Ann. Statist. 22 1947-1975. MR1329177
-
(1947)
Ann. Statist
, vol.22
-
-
FOSTER, D.P.1
GEORGE, E.I.2
-
17
-
-
2942640138
-
On sparse representations in arbitrary redundant bases
-
MR2094894
-
FUCHS, J.-J. (2004). On sparse representations in arbitrary redundant bases. IEEE Trans. Inform. Theory 50 1341-1344. MR2094894
-
(2004)
IEEE Trans. Inform. Theory
, vol.50
, pp. 1341-1344
-
-
FUCHS, J.-J.1
-
18
-
-
0016128505
-
Regressions by leaps and bounds
-
FURNIVAL, G. and WILSON, R. (1974). Regressions by leaps and bounds. Technometrics 16 499-511.
-
(1974)
Technometrics
, vol.16
, pp. 499-511
-
-
FURNIVAL, G.1
WILSON, R.2
-
19
-
-
33645577251
-
Branch-and-bound algorithms for computing the best-subset regression models
-
MR2269366
-
GATU, C. and KONTOGHIORGHES, E. J. (2006). Branch-and-bound algorithms for computing the best-subset regression models. J. Comput. Graph. Statist. 15 139-156. MR2269366
-
(2006)
J. Comput. Graph. Statist
, vol.15
, pp. 139-156
-
-
GATU, C.1
KONTOGHIORGHES, E.J.2
-
20
-
-
0442309436
-
The variable selection problem
-
MR1825282
-
GEORGE, E. I. (2000). The variable selection problem. J. Amer. Statist. Assoc. 95 1304-1308. MR1825282
-
(2000)
J. Amer. Statist. Assoc
, vol.95
, pp. 1304-1308
-
-
GEORGE, E.I.1
-
22
-
-
49749098411
-
-
GOLUB, G. H. and VAN LOAN, C. F. (1996). Matrix Computations, 3rd ed. Johns Hopkins Univ. Press, Baltimore. MR1417720
-
GOLUB, G. H. and VAN LOAN, C. F. (1996). Matrix Computations, 3rd ed. Johns Hopkins Univ. Press, Baltimore. MR1417720
-
-
-
-
23
-
-
33646784371
-
-
GRIBONVAL, R., FIGUERAS I VENTURA, R. M. and VANDERGHEYNST, P. (2005). A simple test to check the optimality of sparse signal approximations. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'05) S 717-720. IEEE Press, Piscataway, NJ. Available at Its1pc19.epfl.ch/repository/Gribonval2005_1167.pdf. A longer version is available at ftp.iri.sa.fr/techreports/2004/PI-1661.pdf.
-
GRIBONVAL, R., FIGUERAS I VENTURA, R. M. and VANDERGHEYNST, P. (2005). A simple test to check the optimality of sparse signal approximations. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'05) S 717-720. IEEE Press, Piscataway, NJ. Available at Its1pc19.epfl.ch/repository/Gribonval2005_1167.pdf. A longer version is available at ftp.iri.sa.fr/techreports/2004/PI-1661.pdf.
-
-
-
-
24
-
-
0347968052
-
Sparse representations in unions of bases
-
MR2045813
-
GRIBONVAL, R. and NIELSEN, M. (2003). Sparse representations in unions of bases. IEEE Trans. Inform. Theory 49 3320-3325. MR2045813
-
(2003)
IEEE Trans. Inform. Theory
, vol.49
, pp. 3320-3325
-
-
GRIBONVAL, R.1
NIELSEN, M.2
-
25
-
-
84925605946
-
The entire regularization path for the support vector machine
-
HASTIE, T., ROSSET, S., TIBSHIRANI, R. and ZHU, J. (2004). The entire regularization path for the support vector machine. J. Mack Learn. Res. 5 1391-1415.
-
(2004)
J. Mack Learn. Res
, vol.5
, pp. 1391-1415
-
-
HASTIE, T.1
ROSSET, S.2
TIBSHIRANI, R.3
ZHU, J.4
-
26
-
-
49749107496
-
-
HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York. MR1851606
-
HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, New York. MR1851606
-
-
-
-
27
-
-
49749099511
-
-
HUO, X. and NI, X. S. (2005). When do stepwise algorithms meet subset selection criteria? Technical report, Georgia Inst. Technology. Available at www2.isye.gatech.edu/statistics/papers/.
-
HUO, X. and NI, X. S. (2005). When do stepwise algorithms meet subset selection criteria? Technical report, Georgia Inst. Technology. Available at www2.isye.gatech.edu/statistics/papers/.
-
-
-
-
29
-
-
0031381525
-
Wrappers for feature subset selection
-
KOHAVI, R. and JOHN, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence 97 273-324.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 273-324
-
-
KOHAVI, R.1
JOHN, G.H.2
-
30
-
-
33646796359
-
Homotopy continuation for sparse signal representation
-
S, IEEE Press, Piscataway, NJ
-
MALIOUTOV, D. M., CETIN, M. and WILLSKY, A. S. (2005). Homotopy continuation for sparse signal representation. In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'05) S 733-736. IEEE Press, Piscataway, NJ.
-
(2005)
Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP'05)
, pp. 733-736
-
-
MALIOUTOV, D.M.1
CETIN, M.2
WILLSKY, A.S.3
-
32
-
-
49749147936
-
-
MILLER, A. J. (2002). Subset Selection in Regression, 2nd ed. Chapman and. Hall/CRC, Boca Raton, FL. MR2001193
-
MILLER, A. J. (2002). Subset Selection in Regression, 2nd ed. Chapman and. Hall/CRC, Boca Raton, FL. MR2001193
-
-
-
-
33
-
-
0017535866
-
A branch and bound algorithm for feature subset selection
-
NARENDRA, P. M. and FUKUNAGA, K. (1977). A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 26 917-922.
-
(1977)
IEEE Trans. Comput
, vol.26
, pp. 917-922
-
-
NARENDRA, P.M.1
FUKUNAGA, K.2
-
34
-
-
0029291966
-
Sparse approximate solutions to linear systems
-
MR1320206
-
NATARAJAN, B. K. (1995). Sparse approximate solutions to linear systems. SIAM J. Comput. 24 227-234. MR1320206
-
(1995)
SIAM J. Comput
, vol.24
, pp. 227-234
-
-
NATARAJAN, B.K.1
-
37
-
-
49749132230
-
-
NI, X. S. and HUO, X. (2006). Regressions by enhanced leaps-and-bounds via optimality tests (LBOT). Technical report, Georgia Inst. Technology. Available at www2.isye.gatech.edu/statistics/papers/.
-
NI, X. S. and HUO, X. (2006). Regressions by enhanced leaps-and-bounds via optimality tests (LBOT). Technical report, Georgia Inst. Technology. Available at www2.isye.gatech.edu/statistics/papers/.
-
-
-
-
38
-
-
49749114249
-
-
OSBORNE, M. R. (1985). Finite Algorithms in Optimization and Data Analysis. Wiley, Chichester. MR0817717
-
OSBORNE, M. R. (1985). Finite Algorithms in Optimization and Data Analysis. Wiley, Chichester. MR0817717
-
-
-
-
40
-
-
0034215549
-
A new approach to variable selection in least squares problems
-
MR1773265
-
OSBORNE, M. R., PRESNELL, B. and TURLACH, B. A. (2000). A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20 389-403. MR1773265
-
(2000)
IMA J. Numer. Anal
, vol.20
, pp. 389-403
-
-
OSBORNE, M.R.1
PRESNELL, B.2
TURLACH, B.A.3
-
41
-
-
13444291619
-
Algorithm AS 233: An improved branch and bound algorithm for feature subset selection
-
RIDOUT, M. S. (1988). Algorithm AS 233: An improved branch and bound algorithm for feature subset selection. Appl. Statist. 37 139-147.
-
(1988)
Appl. Statist
, vol.37
, pp. 139-147
-
-
RIDOUT, M.S.1
-
42
-
-
0007967386
-
Algorithm AS .199: A branch and bound algorithm for determining the optimal feature subset of given size
-
ROBERTS, S. J. (1984). Algorithm AS .199: A branch and bound algorithm for determining the optimal feature subset of given size. Appl. Statist. 33 236-241.
-
(1984)
Appl. Statist
, vol.33
, pp. 236-241
-
-
ROBERTS, S.J.1
-
43
-
-
49749140012
-
-
ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton Univ. Press. MR0274683
-
ROCKAFELLAR, R. T. (1970). Convex Analysis. Princeton Univ. Press. MR0274683
-
-
-
-
44
-
-
0008988926
-
Linear inversion of band-limited reflection seismograms
-
MR0857796
-
SANTOSA, F. and SYMES, W. W. (1986). Linear inversion of band-limited reflection seismograms. SIAM J. Sci. Statist. Comput. 7 1307-1330. MR0857796
-
(1986)
SIAM J. Sci. Statist. Comput
, vol.7
, pp. 1307-1330
-
-
SANTOSA, F.1
SYMES, W.W.2
-
45
-
-
0000120766
-
Estimating the dimension of a model
-
MR0468014
-
SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464. MR0468014
-
(1978)
Ann. Statist
, vol.6
, pp. 461-464
-
-
SCHWARZ, G.1
-
46
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
MR1379242
-
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
-
(1996)
J. Roy. Statist. Soc. Ser. B
, vol.58
, pp. 267-288
-
-
TIBSHIRANI, R.1
-
47
-
-
5444237123
-
Greed is good: Algorithmic results for sparse approximation
-
MR2097044
-
TROPP, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50 2231-2242. MR2097044
-
(2004)
IEEE Trans. Inform. Theory
, vol.50
, pp. 2231-2242
-
-
TROPP, J.A.1
-
48
-
-
33645712308
-
Just relax: Convex programming methods for identifying sparse signals in noise
-
MR2238069
-
TROPP, J. A. (2006). Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52 1030-1051. MR2238069
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, pp. 1030-1051
-
-
TROPP, J.A.1
-
49
-
-
49749089592
-
-
TURLACH, B. A. (2004). Discussion of Least angle regression, by B. Efron, T. Hastie, I. Johnstone and R. Tibshirani. Ann. Statist. 32 481-490.
-
TURLACH, B. A. (2004). Discussion of "Least angle regression," by B. Efron, T. Hastie, I. Johnstone and R. Tibshirani. Ann. Statist. 32 481-490.
-
-
-
-
50
-
-
0000360923
-
Construction of supersaturated designs through partially aliased interactions
-
MR1248029
-
Wu, C.-F. J. (1993). Construction of supersaturated designs through partially aliased interactions. Biometrika 80 661-669. MR1248029
-
(1993)
Biometrika
, vol.80
, pp. 661-669
-
-
Wu, C.-F.J.1
-
51
-
-
34548181170
-
The adaptive Lasso and its oracle properties
-
Unpublished manuscript
-
ZOU, H. (2005). The adaptive Lasso and its oracle properties. Unpublished manuscript.
-
(2005)
-
-
ZOU, H.1
|