메뉴 건너뛰기




Volumn 21, Issue 6, 2008, Pages 702-714

Threefold versus fivefold cross-validation and individual versus average data in predictive regression modelling of machining experimental data

Author keywords

Cross validation; Data splitting; Design of experiments; Predictive data mining; Regression; Turning surface roughness

Indexed keywords

FOOD PROCESSING; FORECASTING; INDUSTRIAL ENGINEERING; MOBILE TELECOMMUNICATION SYSTEMS; SURFACE ROUGHNESS;

EID: 49749130837     PISSN: 0951192X     EISSN: 13623052     Source Type: Journal    
DOI: 10.1080/09511920701530943     Document Type: Article
Times cited : (10)

References (40)
  • 1
    • 0016029778 scopus 로고
    • The relationship between variable selection and data argumentation and a method of prediction
    • Allen, D., The relationship between variable selection and data argumentation and a method of prediction. Technometrics, 1974, 16, 125-127.
    • (1974) Technometrics , vol.16 , pp. 125-127
    • Allen, D.1
  • 3
    • 0000343716 scopus 로고
    • Submodel selection and evaluation in regression: The X-random case
    • Breiman, L. and Spector, P., Submodel selection and evaluation in regression: the X-random case. Int. Stat. Rev., 1992, 60, 291-319.
    • (1992) Int. Stat. Rev , vol.60 , pp. 291-319
    • Breiman, L.1    Spector, P.2
  • 4
    • 0001587464 scopus 로고
    • The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error
    • Breiman, L., The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error. J. Am. Stat. Assoc., 1992, 87, 738-754.
    • (1992) J. Am. Stat. Assoc , vol.87 , pp. 738-754
    • Breiman, L.1
  • 7
    • 1142305317 scopus 로고    scopus 로고
    • Data mining applied to predictive modeling of the knurling process
    • Feng, C.-X. and Wang, X.-F., Data mining applied to predictive modeling of the knurling process. IIE Trans, 2004, 36, 253-263.
    • (2004) IIE Trans , vol.36 , pp. 253-263
    • Feng, C.-X.1    Wang, X.-F.2
  • 8
    • 0040081739 scopus 로고    scopus 로고
    • Feng, C.-X. and Wang, X.-F., Subset selection in predictive regression modeling of the CMM digitization uncertainty. SME J. Mfg Systems, 2002, 21, 419-439.
    • Feng, C.-X. and Wang, X.-F., Subset selection in predictive regression modeling of the CMM digitization uncertainty. SME J. Mfg Systems, 2002, 21, 419-439.
  • 9
    • 0037233403 scopus 로고    scopus 로고
    • Surface roughness predictive modeling: Neural networks versus regression
    • Feng, C.-X. and Wang, X.-F., Surface roughness predictive modeling: neural networks versus regression. IIE Trans, 2003, 35, 11-27.
    • (2003) IIE Trans , vol.35 , pp. 11-27
    • Feng, C.-X.1    Wang, X.-F.2
  • 10
    • 28944449352 scopus 로고    scopus 로고
    • Selection and validation of predictive regression and neural network models for data from designed experiments
    • Feng, C.-X., Yu, Z.-G. and Kusiak, A., Selection and validation of predictive regression and neural network models for data from designed experiments. IIE Trans, 2006, 38, 13-24.
    • (2006) IIE Trans , vol.38 , pp. 13-24
    • Feng, C.-X.1    Yu, Z.-G.2    Kusiak, A.3
  • 11
    • 27744492722 scopus 로고    scopus 로고
    • Validation and data splitting in predictive regression modeling of honing experimental data
    • Feng, C.-X., Yu, Z.-G. and Wang, J.-.H., Validation and data splitting in predictive regression modeling of honing experimental data. Int. J. Prod. Res., 2005, 43, 1555-1571.
    • (2005) Int. J. Prod. Res , vol.43 , pp. 1555-1571
    • Feng, C.-X.1    Yu, Z.-G.2    Wang, J.H.3
  • 12
    • 0040482037 scopus 로고    scopus 로고
    • Feng, C.-X., Wang, X.-F. and Yu, Z., Neural networks modeling of honing surface roughness parameters defined by IS013565. SME J. Mfg Systems, 2002, 21, 395-408.
    • Feng, C.-X., Wang, X.-F. and Yu, Z., Neural networks modeling of honing surface roughness parameters defined by IS013565. SME J. Mfg Systems, 2002, 21, 395-408.
  • 13
    • 33745737321 scopus 로고    scopus 로고
    • Feng, C.-X., Yu, Z.-G., Kingi, U. and Baig, M.P., Threefold vs. fivefold cross-validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data. SME J. Mfg Systems, 2005, 24, 93-107.
    • Feng, C.-X., Yu, Z.-G., Kingi, U. and Baig, M.P., Threefold vs. fivefold cross-validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data. SME J. Mfg Systems, 2005, 24, 93-107.
  • 16
    • 84938437360 scopus 로고
    • Selection of variables for fitting equations to data
    • Gorman, J.W. and Torman, R.J., 1966, Selection of variables for fitting equations to data. Technometrics, 1966, 8, 27-51.
    • (1966) Technometrics , vol.1966 , Issue.8 , pp. 27-51
    • Gorman, J.W.1    Torman, R.J.2
  • 22
    • 85006879809 scopus 로고    scopus 로고
    • p and prediction with many regressors: Comments on mallows (1995)
    • p and prediction with many regressors: comments on mallows (1995). Technometrics, 1997, 39, 115-116.
    • (1997) Technometrics , vol.39 , pp. 115-116
    • Mallows, C.L.1
  • 27
    • 0015971972 scopus 로고
    • The jackknife - a review
    • Miller, R.G., The jackknife - a review. Biometrika, 1974, 61, 1-15.
    • (1974) Biometrika , vol.61 , pp. 1-15
    • Miller, R.G.1
  • 32
    • 84952126648 scopus 로고
    • Validation of regression models: Methods and examples
    • Snee, R.D., Validation of regression models: methods and examples. Technometrics, 1977, 19, 415-428.
    • (1977) Technometrics , vol.19 , pp. 415-428
    • Snee, R.D.1
  • 33
    • 0000859675 scopus 로고
    • An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion
    • Stone, M., An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. J. Roy. Statistician Soc., Ser. B, 1977, 39, 44-47.
    • (1977) J. Roy. Statistician Soc., Ser. B , vol.39 , pp. 44-47
    • Stone, M.1
  • 34
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M., Cross-validatory choice and assessment of statistical predictions. J. Roy. Statistician Soe. Ser. B, 1974, 36, 111-147.
    • (1974) J. Roy. Statistician Soe. Ser. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 35
    • 0002583992 scopus 로고
    • Selection of variables in multiple regression: Part I - a review and evaluation
    • Thompson, M.L., Selection of variables in multiple regression: part I - a review and evaluation. Int. Stat. Rev., 1978a, 46, 1-19.
    • (1978) Int. Stat. Rev , vol.46 , pp. 1-19
    • Thompson, M.L.1
  • 36
    • 0000628403 scopus 로고
    • Selection of variables in multiple regression: Part II - chosen procedures, computations and examples
    • Thompson, M.L., Selection of variables in multiple regression: part II - chosen procedures, computations and examples. Int. Stat. Rev., 1978b, 46, 129-146.
    • (1978) Int. Stat. Rev , vol.46 , pp. 129-146
    • Thompson, M.L.1
  • 37
    • 0032140934 scopus 로고    scopus 로고
    • Bias and variance of validation methods for function approximation neural networks under conditions of sparse data
    • Twomey, J.M. and Smith, A.E., Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Trans Systems, Man, Cybernetics, Part C, 1998, 28, 417-430.
    • (1998) IEEE Trans Systems, Man, Cybernetics, Part C , vol.28 , pp. 417-430
    • Twomey, J.M.1    Smith, A.E.2
  • 39
    • 49749091531 scopus 로고    scopus 로고
    • Yu, Z.-G., Selection and validation of predictive regression and neural networks models for experimental data from machining surface roughness studies. MS Thesis (Advisor: Dr C. Jack Feng), Department of Industrial and Manufacturing Engineering and Technology, Bradley University, Peoria, Illinois, USA, December, 2003. Available online at hilltop.bradley.edu/~cfeng.
    • Yu, Z.-G., Selection and validation of predictive regression and neural networks models for experimental data from machining surface roughness studies. MS Thesis (Advisor: Dr C. Jack Feng), Department of Industrial and Manufacturing Engineering and Technology, Bradley University, Peoria, Illinois, USA, December, 2003. Available online at hilltop.bradley.edu/~cfeng.
  • 40
    • 21144472438 scopus 로고
    • Model selection via multifold cross-validation
    • Zhang, P., Model selection via multifold cross-validation. Annls Statistics, 1993, 21, 299-311.
    • (1993) Annls Statistics , vol.21 , pp. 299-311
    • Zhang, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.