-
1
-
-
0016029778
-
The relationship between variable selection and data argumentation and a method of prediction
-
Allen, D., The relationship between variable selection and data argumentation and a method of prediction. Technometrics, 1974, 16, 125-127.
-
(1974)
Technometrics
, vol.16
, pp. 125-127
-
-
Allen, D.1
-
3
-
-
0000343716
-
Submodel selection and evaluation in regression: The X-random case
-
Breiman, L. and Spector, P., Submodel selection and evaluation in regression: the X-random case. Int. Stat. Rev., 1992, 60, 291-319.
-
(1992)
Int. Stat. Rev
, vol.60
, pp. 291-319
-
-
Breiman, L.1
Spector, P.2
-
4
-
-
0001587464
-
The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error
-
Breiman, L., The little bootstrap and other methods for dimensionality selection in regression: X-fixed prediction error. J. Am. Stat. Assoc., 1992, 87, 738-754.
-
(1992)
J. Am. Stat. Assoc
, vol.87
, pp. 738-754
-
-
Breiman, L.1
-
7
-
-
1142305317
-
Data mining applied to predictive modeling of the knurling process
-
Feng, C.-X. and Wang, X.-F., Data mining applied to predictive modeling of the knurling process. IIE Trans, 2004, 36, 253-263.
-
(2004)
IIE Trans
, vol.36
, pp. 253-263
-
-
Feng, C.-X.1
Wang, X.-F.2
-
8
-
-
0040081739
-
-
Feng, C.-X. and Wang, X.-F., Subset selection in predictive regression modeling of the CMM digitization uncertainty. SME J. Mfg Systems, 2002, 21, 419-439.
-
Feng, C.-X. and Wang, X.-F., Subset selection in predictive regression modeling of the CMM digitization uncertainty. SME J. Mfg Systems, 2002, 21, 419-439.
-
-
-
-
9
-
-
0037233403
-
Surface roughness predictive modeling: Neural networks versus regression
-
Feng, C.-X. and Wang, X.-F., Surface roughness predictive modeling: neural networks versus regression. IIE Trans, 2003, 35, 11-27.
-
(2003)
IIE Trans
, vol.35
, pp. 11-27
-
-
Feng, C.-X.1
Wang, X.-F.2
-
10
-
-
28944449352
-
Selection and validation of predictive regression and neural network models for data from designed experiments
-
Feng, C.-X., Yu, Z.-G. and Kusiak, A., Selection and validation of predictive regression and neural network models for data from designed experiments. IIE Trans, 2006, 38, 13-24.
-
(2006)
IIE Trans
, vol.38
, pp. 13-24
-
-
Feng, C.-X.1
Yu, Z.-G.2
Kusiak, A.3
-
11
-
-
27744492722
-
Validation and data splitting in predictive regression modeling of honing experimental data
-
Feng, C.-X., Yu, Z.-G. and Wang, J.-.H., Validation and data splitting in predictive regression modeling of honing experimental data. Int. J. Prod. Res., 2005, 43, 1555-1571.
-
(2005)
Int. J. Prod. Res
, vol.43
, pp. 1555-1571
-
-
Feng, C.-X.1
Yu, Z.-G.2
Wang, J.H.3
-
12
-
-
0040482037
-
-
Feng, C.-X., Wang, X.-F. and Yu, Z., Neural networks modeling of honing surface roughness parameters defined by IS013565. SME J. Mfg Systems, 2002, 21, 395-408.
-
Feng, C.-X., Wang, X.-F. and Yu, Z., Neural networks modeling of honing surface roughness parameters defined by IS013565. SME J. Mfg Systems, 2002, 21, 395-408.
-
-
-
-
13
-
-
33745737321
-
-
Feng, C.-X., Yu, Z.-G., Kingi, U. and Baig, M.P., Threefold vs. fivefold cross-validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data. SME J. Mfg Systems, 2005, 24, 93-107.
-
Feng, C.-X., Yu, Z.-G., Kingi, U. and Baig, M.P., Threefold vs. fivefold cross-validation in one-hidden-layer and two-hidden-layer predictive neural network modeling of machining surface roughness data. SME J. Mfg Systems, 2005, 24, 93-107.
-
-
-
-
16
-
-
84938437360
-
Selection of variables for fitting equations to data
-
Gorman, J.W. and Torman, R.J., 1966, Selection of variables for fitting equations to data. Technometrics, 1966, 8, 27-51.
-
(1966)
Technometrics
, vol.1966
, Issue.8
, pp. 27-51
-
-
Gorman, J.W.1
Torman, R.J.2
-
18
-
-
0003684449
-
-
Springer: New York
-
Hastie, T., Tibshirani, R. and Friedman, J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2001 (Springer: New York).
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
22
-
-
85006879809
-
p and prediction with many regressors: Comments on mallows (1995)
-
p and prediction with many regressors: comments on mallows (1995). Technometrics, 1997, 39, 115-116.
-
(1997)
Technometrics
, vol.39
, pp. 115-116
-
-
Mallows, C.L.1
-
27
-
-
0015971972
-
The jackknife - a review
-
Miller, R.G., The jackknife - a review. Biometrika, 1974, 61, 1-15.
-
(1974)
Biometrika
, vol.61
, pp. 1-15
-
-
Miller, R.G.1
-
32
-
-
84952126648
-
Validation of regression models: Methods and examples
-
Snee, R.D., Validation of regression models: methods and examples. Technometrics, 1977, 19, 415-428.
-
(1977)
Technometrics
, vol.19
, pp. 415-428
-
-
Snee, R.D.1
-
33
-
-
0000859675
-
An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion
-
Stone, M., An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. J. Roy. Statistician Soc., Ser. B, 1977, 39, 44-47.
-
(1977)
J. Roy. Statistician Soc., Ser. B
, vol.39
, pp. 44-47
-
-
Stone, M.1
-
34
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions
-
Stone, M., Cross-validatory choice and assessment of statistical predictions. J. Roy. Statistician Soe. Ser. B, 1974, 36, 111-147.
-
(1974)
J. Roy. Statistician Soe. Ser. B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
35
-
-
0002583992
-
Selection of variables in multiple regression: Part I - a review and evaluation
-
Thompson, M.L., Selection of variables in multiple regression: part I - a review and evaluation. Int. Stat. Rev., 1978a, 46, 1-19.
-
(1978)
Int. Stat. Rev
, vol.46
, pp. 1-19
-
-
Thompson, M.L.1
-
36
-
-
0000628403
-
Selection of variables in multiple regression: Part II - chosen procedures, computations and examples
-
Thompson, M.L., Selection of variables in multiple regression: part II - chosen procedures, computations and examples. Int. Stat. Rev., 1978b, 46, 129-146.
-
(1978)
Int. Stat. Rev
, vol.46
, pp. 129-146
-
-
Thompson, M.L.1
-
37
-
-
0032140934
-
Bias and variance of validation methods for function approximation neural networks under conditions of sparse data
-
Twomey, J.M. and Smith, A.E., Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Trans Systems, Man, Cybernetics, Part C, 1998, 28, 417-430.
-
(1998)
IEEE Trans Systems, Man, Cybernetics, Part C
, vol.28
, pp. 417-430
-
-
Twomey, J.M.1
Smith, A.E.2
-
39
-
-
49749091531
-
-
Yu, Z.-G., Selection and validation of predictive regression and neural networks models for experimental data from machining surface roughness studies. MS Thesis (Advisor: Dr C. Jack Feng), Department of Industrial and Manufacturing Engineering and Technology, Bradley University, Peoria, Illinois, USA, December, 2003. Available online at hilltop.bradley.edu/~cfeng.
-
Yu, Z.-G., Selection and validation of predictive regression and neural networks models for experimental data from machining surface roughness studies. MS Thesis (Advisor: Dr C. Jack Feng), Department of Industrial and Manufacturing Engineering and Technology, Bradley University, Peoria, Illinois, USA, December, 2003. Available online at hilltop.bradley.edu/~cfeng.
-
-
-
-
40
-
-
21144472438
-
Model selection via multifold cross-validation
-
Zhang, P., Model selection via multifold cross-validation. Annls Statistics, 1993, 21, 299-311.
-
(1993)
Annls Statistics
, vol.21
, pp. 299-311
-
-
Zhang, P.1
|