-
2
-
-
0000343716
-
Submodel selection and evaluation in regression: The X-random case
-
Breiman, L. and Spector, P., Submodel selection and evaluation in regression: The X-random case. Int. Stat. Rev., 1992, 60, 291-319.
-
(1992)
Int. Stat. Rev.
, vol.60
, pp. 291-319
-
-
Breiman, L.1
Spector, P.2
-
5
-
-
0002344794
-
Bootstrap methods: Another look at the jackknife
-
Efron, B., Bootstrap methods: Another look at the jackknife. Ann. Stat., 1979, 7, 1-26.
-
(1979)
Ann. Stat.
, vol.7
, pp. 1-26
-
-
Efron, B.1
-
6
-
-
0040081739
-
Subset selection in predictive regression modeling of the CMM digitization uncertainty
-
Feng, C.-X. and Wang, X.-F., Subset selection in predictive regression modeling of the CMM digitization uncertainty. SME J. Manuf. Syst., 2002a, 21, 419-439.
-
(2002)
SME J. Manuf. Syst.
, vol.21
, pp. 419-439
-
-
Feng, C.-X.1
Wang, X.-F.2
-
7
-
-
0036391197
-
Development of empirical models for surface roughness prediction in finish turning
-
Feng, C.-X. and Wang, X.-F., Development of empirical models for surface roughness prediction in finish turning. Int. J. Adv. Manuf. Tech., 2002b, 20, 348-56.
-
(2002)
Int. J. Adv. Manuf. Tech.
, vol.20
, pp. 348-356
-
-
Feng, C.-X.1
Wang, X.-F.2
-
8
-
-
0037233403
-
Surface roughness predictive modeling: Neural networks versus regression
-
Feng, C.-X. and Wang, X.-F., Surface roughness predictive modeling: Neural networks versus regression. IIE Trans., 2003, 35, 11-27.
-
(2003)
IIE Trans.
, vol.35
, pp. 11-27
-
-
Feng, C.-X.1
Wang, X.-F.2
-
9
-
-
1142305317
-
Data mining applied to predictive modeling of the knurling process
-
Feng, C.-X. and Wang, X.-F., Data mining applied to predictive modeling of the knurling process. IIE Trans., 2004, 36, 253-263.
-
(2004)
IIE Trans.
, vol.36
, pp. 253-263
-
-
Feng, C.-X.1
Wang, X.-F.2
-
10
-
-
0040482037
-
Neural networks modeling of honing surface roughness parameters defined by ISO13565
-
Feng, C.-X., Wang, X.-F. and Yu, Z., Neural networks modeling of honing surface roughness parameters defined by ISO13565. SME J. Manuf. Syst., 2002, 21, 395-408.
-
(2002)
SME J. Manuf. Syst.
, vol.21
, pp. 395-408
-
-
Feng, C.-X.1
Wang, X.-F.2
Yu, Z.3
-
11
-
-
27744521694
-
Selection and validation of predictive regression and neural networks modeling for data from designed experiments
-
under third review
-
Feng, C.-X., Yu, Z. and Kusiak, A., Selection and validation of predictive regression and neural networks modeling for data from designed experiments. IIE Trans., 2004 (under third review).
-
(2004)
IIE Trans.
-
-
Feng, C.-X.1
Yu, Z.2
Kusiak, A.3
-
14
-
-
84938437360
-
Selection of variables for fitting equations to data
-
Gorman, J.W. and Torman, R.J., Selection of variables for fitting equations to data. Technometrics, 1966, 8, 27-51.
-
(1966)
Technometrics
, vol.8
, pp. 27-51
-
-
Gorman, J.W.1
Torman, R.J.2
-
19
-
-
85006879809
-
p and prediction with many regressors: Comments on Mallows (1995)
-
p and prediction with many regressors: Comments on Mallows (1995). Technometrics, 1997, 39, 115-116.
-
(1997)
Technometrics
, vol.39
, pp. 115-116
-
-
Mallows, C.L.1
-
20
-
-
0003971926
-
-
(Chapman & Hall: Boca Raton, FL), and personal communications
-
Miller, A.J., Subset Selection in Regression, 2nd edn, 2002 (Chapman & Hall: Boca Raton, FL), and personal communications.
-
(2002)
Subset Selection in Regression, 2nd Edn
-
-
Miller, A.J.1
-
23
-
-
0003463572
-
-
(Wiley: New York), and personal communications with Professor Montgomery
-
Montgomery, D.C., Peck, E.A. and Vining, G.G., Introduction to Linear Regression Analysis, 3rd edn, 2001 (Wiley: New York), and personal communications with Professor Montgomery.
-
(2001)
Introduction to Linear Regression Analysis, 3rd Edn
-
-
Montgomery, D.C.1
Peck, E.A.2
Vining, G.G.3
-
27
-
-
0002583992
-
Selection of variables in multiple regression: Part I - Review and evaluation
-
Thompson, M.L., Selection of variables in multiple regression: Part I - review and evaluation. Int. Stat. Rev., 1978a, 46, 1-19.
-
(1978)
Int. Stat. Rev.
, vol.46
, pp. 1-19
-
-
Thompson, M.L.1
-
28
-
-
0000628403
-
Selection of variables in multiple regression: Part II - Chosen procedures, computations and examples
-
Thompson, M.L., Selection of variables in multiple regression: Part II - Chosen procedures, computations and examples. Int. Stat. Rev., 1978b, 46, 129-146.
-
(1978)
Int. Stat. Rev.
, vol.46
, pp. 129-146
-
-
Thompson, M.L.1
-
29
-
-
0032140934
-
Bias and variance of validation methods for function approximation neural networks under conditions of sparse data
-
Twomey, J.M. and Smith, A.E., Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Trans. Syst., Man, Cybern., Part C, 1998, 28, 417-430.
-
(1998)
IEEE Trans. Syst., Man, Cybern.
, vol.28
, Issue.100 PART
, pp. 417-430
-
-
Twomey, J.M.1
Smith, A.E.2
-
31
-
-
27744493376
-
-
MS thesis (Advisor: Dr. C. Jack Feng), Department of Industrial and Manufacturing Engineering and Technology, Bradley University, Peoria, IL, USA, December
-
Yu, Z.-G., Selection and validation of predictive regression and neural networks models for experimental data from machining surface roughness studies. MS thesis (Advisor: Dr. C. Jack Feng), Department of Industrial and Manufacturing Engineering and Technology, Bradley University, Peoria, IL, USA, December 2003.
-
(2003)
Selection and Validation of Predictive Regression and Neural Networks Models for Experimental Data from Machining Surface Roughness Studies
-
-
Yu, Z.-G.1
-
32
-
-
21144472438
-
Model selection via multifold cross-validation
-
Zhang, P., Model selection via multifold cross-validation. Ann. Stat., 1993, 21, 299-311.
-
(1993)
Ann. Stat.
, vol.21
, pp. 299-311
-
-
Zhang, P.1
|