메뉴 건너뛰기




Volumn 43, Issue 8, 2005, Pages 1555-1571

Validation and data splitting in predictive regression modeling of honing surface roughness data

Author keywords

Cross validation; Data splitting; Design of experiments; Honing surface roughness; Predictive modeling; Regression

Indexed keywords

COMPUTER SIMULATION; DATA REDUCTION; ERROR ANALYSIS; MATHEMATICAL MODELS; REGRESSION ANALYSIS; STATISTICAL METHODS;

EID: 27744492722     PISSN: 00207543     EISSN: 1366588X     Source Type: Journal    
DOI: 10.1080/00207540412331317845     Document Type: Article
Times cited : (12)

References (32)
  • 2
    • 0000343716 scopus 로고
    • Submodel selection and evaluation in regression: The X-random case
    • Breiman, L. and Spector, P., Submodel selection and evaluation in regression: The X-random case. Int. Stat. Rev., 1992, 60, 291-319.
    • (1992) Int. Stat. Rev. , vol.60 , pp. 291-319
    • Breiman, L.1    Spector, P.2
  • 5
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron, B., Bootstrap methods: Another look at the jackknife. Ann. Stat., 1979, 7, 1-26.
    • (1979) Ann. Stat. , vol.7 , pp. 1-26
    • Efron, B.1
  • 6
    • 0040081739 scopus 로고    scopus 로고
    • Subset selection in predictive regression modeling of the CMM digitization uncertainty
    • Feng, C.-X. and Wang, X.-F., Subset selection in predictive regression modeling of the CMM digitization uncertainty. SME J. Manuf. Syst., 2002a, 21, 419-439.
    • (2002) SME J. Manuf. Syst. , vol.21 , pp. 419-439
    • Feng, C.-X.1    Wang, X.-F.2
  • 7
    • 0036391197 scopus 로고    scopus 로고
    • Development of empirical models for surface roughness prediction in finish turning
    • Feng, C.-X. and Wang, X.-F., Development of empirical models for surface roughness prediction in finish turning. Int. J. Adv. Manuf. Tech., 2002b, 20, 348-56.
    • (2002) Int. J. Adv. Manuf. Tech. , vol.20 , pp. 348-356
    • Feng, C.-X.1    Wang, X.-F.2
  • 8
    • 0037233403 scopus 로고    scopus 로고
    • Surface roughness predictive modeling: Neural networks versus regression
    • Feng, C.-X. and Wang, X.-F., Surface roughness predictive modeling: Neural networks versus regression. IIE Trans., 2003, 35, 11-27.
    • (2003) IIE Trans. , vol.35 , pp. 11-27
    • Feng, C.-X.1    Wang, X.-F.2
  • 9
    • 1142305317 scopus 로고    scopus 로고
    • Data mining applied to predictive modeling of the knurling process
    • Feng, C.-X. and Wang, X.-F., Data mining applied to predictive modeling of the knurling process. IIE Trans., 2004, 36, 253-263.
    • (2004) IIE Trans. , vol.36 , pp. 253-263
    • Feng, C.-X.1    Wang, X.-F.2
  • 10
    • 0040482037 scopus 로고    scopus 로고
    • Neural networks modeling of honing surface roughness parameters defined by ISO13565
    • Feng, C.-X., Wang, X.-F. and Yu, Z., Neural networks modeling of honing surface roughness parameters defined by ISO13565. SME J. Manuf. Syst., 2002, 21, 395-408.
    • (2002) SME J. Manuf. Syst. , vol.21 , pp. 395-408
    • Feng, C.-X.1    Wang, X.-F.2    Yu, Z.3
  • 11
    • 27744521694 scopus 로고    scopus 로고
    • Selection and validation of predictive regression and neural networks modeling for data from designed experiments
    • under third review
    • Feng, C.-X., Yu, Z. and Kusiak, A., Selection and validation of predictive regression and neural networks modeling for data from designed experiments. IIE Trans., 2004 (under third review).
    • (2004) IIE Trans.
    • Feng, C.-X.1    Yu, Z.2    Kusiak, A.3
  • 14
    • 84938437360 scopus 로고
    • Selection of variables for fitting equations to data
    • Gorman, J.W. and Torman, R.J., Selection of variables for fitting equations to data. Technometrics, 1966, 8, 27-51.
    • (1966) Technometrics , vol.8 , pp. 27-51
    • Gorman, J.W.1    Torman, R.J.2
  • 19
    • 85006879809 scopus 로고    scopus 로고
    • p and prediction with many regressors: Comments on Mallows (1995)
    • p and prediction with many regressors: Comments on Mallows (1995). Technometrics, 1997, 39, 115-116.
    • (1997) Technometrics , vol.39 , pp. 115-116
    • Mallows, C.L.1
  • 27
    • 0002583992 scopus 로고
    • Selection of variables in multiple regression: Part I - Review and evaluation
    • Thompson, M.L., Selection of variables in multiple regression: Part I - review and evaluation. Int. Stat. Rev., 1978a, 46, 1-19.
    • (1978) Int. Stat. Rev. , vol.46 , pp. 1-19
    • Thompson, M.L.1
  • 28
    • 0000628403 scopus 로고
    • Selection of variables in multiple regression: Part II - Chosen procedures, computations and examples
    • Thompson, M.L., Selection of variables in multiple regression: Part II - Chosen procedures, computations and examples. Int. Stat. Rev., 1978b, 46, 129-146.
    • (1978) Int. Stat. Rev. , vol.46 , pp. 129-146
    • Thompson, M.L.1
  • 29
    • 0032140934 scopus 로고    scopus 로고
    • Bias and variance of validation methods for function approximation neural networks under conditions of sparse data
    • Twomey, J.M. and Smith, A.E., Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Trans. Syst., Man, Cybern., Part C, 1998, 28, 417-430.
    • (1998) IEEE Trans. Syst., Man, Cybern. , vol.28 , Issue.100 PART , pp. 417-430
    • Twomey, J.M.1    Smith, A.E.2
  • 32
    • 21144472438 scopus 로고
    • Model selection via multifold cross-validation
    • Zhang, P., Model selection via multifold cross-validation. Ann. Stat., 1993, 21, 299-311.
    • (1993) Ann. Stat. , vol.21 , pp. 299-311
    • Zhang, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.