ARTICLE;
BINDING AFFINITY;
BINDING SITE;
CALCULATION;
CELL STRAIN HEK293;
CONCENTRATION RESPONSE;
CONTROLLED STUDY;
CRYSTAL STRUCTURE;
CYANOBACTERIUM;
DRUG BINDING;
DRUG POTENCY;
DRUG SPECIFICITY;
DRUG STRUCTURE;
EMBRYO;
HUMAN;
HUMAN CELL;
IC 50;
IN VITRO STUDY;
MOLECULAR DOCKING;
Molecular details of cAMP generation in mammalian cells: A tale of two systems
Kamenetsky, M.; Middelhaufe, S.; Bank, E. M.; Levin, L. R.; Buck, J.; et al. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J. Mol. Biol. 2006, 362, 623-639.
Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals
Buck, J.; Sinclair, M. L.; Schapal, L.; Cann, M. J.; Levin, L. R. Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 79-84.
Identification and functional analysis of splice variants of the germ cell soluble adenylyl cyclase
Jaiswal, B. S.; Conti, M. Identification and functional analysis of splice variants of the germ cell soluble adenylyl cyclase. J. Biol. Chem. 2001, 276, 31698-31708.
Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor
Chen, Y.; Cann, M. J.; Litvin, T. N.; Iourgenko, V.; Sinclair, M. L.; et al. Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 2000, 289, 625-628.
Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate
Litvin, T. N.; Kamenetsky, M.; Zarifyan, A.; Buck, J.; Levin, L. R. Kinetic properties of "soluble" adenylyl cyclase. Synergism between calcium and bicarbonate. J. Biol. Chem. 2003, 278, 15922-15926.
CO(2)/HCO(3)(-)-responsive soluble adenylyl cyclase as a putative metabolic sensor
Zippin, J. H.; Levin, L. R.; Buck, J. CO(2)/HCO(3)(-)-responsive soluble adenylyl cyclase as a putative metabolic sensor. Trends Endocrinol. Metab. 2001, 12, 366-370.
Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS
Tesmer, J. J.; Sunahara, R. K.; Gilman, A. G.; Sprang, S. R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science 1997, 278, 1907-1916.
Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment
Steegborn, C.; Litvin, T. N.; Levin, L. R.; Buck, J.; Wu, H. Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. Nat. Struct. Mol. Biol. 2005, 12, 32-37.
Tesmer, J. J.; Sunahara, R. K.; Johnson, R. A.; Gosselin, G.; Gilman, A. G.; et al. Two-metal ion catalysis in adenylyl cyclase. Science 1999, 285, 756-760.
Specific expression of soluble adenylyl cyclase in male germ cells
Sinclair, M. L.; Wang, X. Y.; Mattia, M.; Conti, M.; Buck, J.; et al. Specific expression of soluble adenylyl cyclase in male germ cells. Mol. Reprod. Dev. 2000, 56, 6-11.
Cloning and characterization of the human soluble adenylyl cyclase
Geng, W.; Wang, Z.; Zhang, J.; Reed, B. Y.; Pak, C. Y.; et al. Cloning and characterization of the human soluble adenylyl cyclase. Am. J. Physiol. Cell Physiol. 2005, 288, C1305-1316.
Molecular basis for P-site inhibition of adenylyl cyclase
Tesmer, J. J.; Dessauer, C. W.; Sunahara, R. K.; Murray, L. D.; Johnson, R. A.; et al. Molecular basis for P-site inhibition of adenylyl cyclase. Biochemistry 2000, 39, 14464-14471.
The interactions of adenylate cvclases with P-site inhibitors
Dessauer, C. W.; Tesmer, J. J.; Sprang, S. R.; Gilman, A. G. The interactions of adenylate cvclases with P-site inhibitors. Trends Pharmacol. Sci. 1999, 20, 205-210.
Differential inhibition of adenylyl cyclase isoforms and soluble guanylyl cyclase by purine and pyrimidine nucleotides
Gille, A.; Lushington, G. H.; Mou, T. C.; Doughty, M. B.; Johnson, R. A.; et al. Differential inhibition of adenylyl cyclase isoforms and soluble guanylyl cyclase by purine and pyrimidine nucleotides. J. Biol. Chem. 2004, 279, 19955-19969.
Metal coordination-based inhibitors of adenylyl cyclase: Novel potent P-site antagonists
Levy, D. E.; Bao, M.; Cherbavaz, D. B.; Tomlinson, J. E.; Sedlock, D. M.; et al. Metal coordination-based inhibitors of adenylyl cyclase: novel potent P-site antagonists. J. Med. Chem. 2003, 46, 2177-2186.
Direct inhibition of type 5 adenylyl cyclase prevents myocardial apoptosis without functional deterioration
Iwatsubo, K.; Minamisawa, S.; Tsunematsu, T.; Nakagome, M.; Toya, Y.; et al. Direct inhibition of type 5 adenylyl cyclase prevents myocardial apoptosis without functional deterioration. J. Biol. Chem. 2004, 279, 40938-40945.
Inhibition of adenylyl cyclase by acyclic nucleoside phosphorate antiviral agents
Shoshani, I.; Laux, W. H.; Perigaud, C.; Gosselin, G.; Johnson, R. A. Inhibition of adenylyl cyclase by acyclic nucleoside phosphorate antiviral agents. J. Biol. Chem. 1999, 274, 34742-34744.
The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization
Hess, K. C.; Jones, B. H.; Marquez, B.; Chen, Y.; Ord, T. S.; et al. The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev. Cell 2005, 9, 249-259.
Structural basis for the inhibition of mammalian membrane adenylyl cyclase by 2′(3′)-O-(N-Methylanthraniloyl)-guanosine 5′-triphosphate
Mou, T. C.; Gille, A.; Fancy, D. A.; Seifert, R.; Sprang, S. R. Structural basis for the inhibition of mammalian membrane adenylyl cyclase by 2′(3′)-O-(N-Methylanthraniloyl)-guanosine 5′-triphosphate. J. Biol. Chem. 2005, 280, 7253-7261.
A novel mechanism for adenylyl cyclase inhibition from the crystal structure of its complex with catechol estrogen
Steegborn, C.; Litvin, T. N.; Hess, K. C.; Capper, A. B.; Taussig, R.; et al. A novel mechanism for adenylyl cyclase inhibition from the crystal structure of its complex with catechol estrogen. J. Biol. Chem. 2005, 280, 31754-31759.
Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function
Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; et al. Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639-1662.
Virtual screening of human 5-aminoimidazole-4-carboxamide ribonucleotide transformylase against the NCI diversity set by use of AutoDock to identify novel nonfolate inhibitors
Li, C.; Xu, L.; Wolan, D. W.; Wilson, I. A.; Olson, A. J. Virtual screening of human 5-aminoimidazole-4-carboxamide ribonucleotide transformylase against the NCI diversity set by use of AutoDock to identify novel nonfolate inhibitors. J. Med. Chem. 2004, 47, 6681-6690.
Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling
Pastor-Soler, N.; Beaulieu, V.; Litvin, T. N.; Da Silva, N.; Chen, Y.; et al. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J. Biol. Chem. 2003, 278, 49523-49529.
Inhibition of the soluble form of testis adenylate cyclase by catechol estrogens and other catechols
Braun, T. Inhibition of the soluble form of testis adenylate cyclase by catechol estrogens and other catechols. Proc. Soc. Exp. Biol. Med. 1990, 194, 58-63.
Mechanism of nucleotide release from Rho by the GDP dissociation stimulator protein
Hutchinson, J. P.; Eccleston, J. F. Mechanism of nucleotide release from Rho by the GDP dissociation stimulator protein. Biochemistry 2000, 39, 11348-11359.
Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides
Pisareva, V. P.; Pisarev, A. V.; Hellen, C. U.; Rodnina, M. V.; Pestova, T. V. Kinetic analysis of interaction of eukaryotic release factor 3 with guanine nucleotides. J. Biol. Chem. 2006, 281, 40224-40235.
Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs
Pinto, C.; Papa, D.; Hubner, M.; Mou, T. C.; Lushington, G. H.; et al. Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs. J. Pharmacol. Exp. Ther. 2008, 325, 27-36.