메뉴 건너뛰기




Volumn 159, Issue 20, 2008, Pages 2650-2667

A fuzzy-neural multi-model for nonlinear systems identification and control

Author keywords

DC motor control; Direct adaptive control; Fuzzy neural hierarchical multi model; Indirect adaptive control; Recurrent neural networks; Systems identification

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; ADAPTIVE SYSTEMS; CHLORINE COMPOUNDS; CONTROL SYSTEMS; CONTROL THEORY; COORDINATION REACTIONS; FUZZY CONTROL; HIERARCHICAL SYSTEMS; IMAGE CLASSIFICATION; INTELLIGENT CONTROL; LAWS AND LEGISLATION; MEMBERSHIP FUNCTIONS; NEURAL NETWORKS; NONLINEAR SYSTEMS; RECURRENT NEURAL NETWORKS; REINFORCEMENT LEARNING;

EID: 49049116696     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2008.01.027     Document Type: Article
Times cited : (56)

References (35)
  • 1
    • 0142216227 scopus 로고    scopus 로고
    • Regularity and chaos in recurrent fuzzy systems
    • Adamy J., and Kempf R. Regularity and chaos in recurrent fuzzy systems. Fuzzy Sets and Systems 140 2 (2003) 259-284
    • (2003) Fuzzy Sets and Systems , vol.140 , Issue.2 , pp. 259-284
    • Adamy, J.1    Kempf, R.2
  • 2
    • 0028494556 scopus 로고
    • Block partial derivative and its application to neural-net-based direct-model-reference adaptive control
    • Ahmed M.S. Block partial derivative and its application to neural-net-based direct-model-reference adaptive control. IEE Proc. Control Theory Appl. 141 5 (1994) 305-314
    • (1994) IEE Proc. Control Theory Appl. , vol.141 , Issue.5 , pp. 305-314
    • Ahmed, M.S.1
  • 4
    • 84947466353 scopus 로고    scopus 로고
    • I. Baruch, J.M. Flores, R. Garrido, A fuzzy-neural recurrent multi-model for systems identification and control, in: Proc. European Control Conference, ECC'01, Porto, Portugal, September 4-7, 2001, pp. 3540-3545.
    • I. Baruch, J.M. Flores, R. Garrido, A fuzzy-neural recurrent multi-model for systems identification and control, in: Proc. European Control Conference, ECC'01, Porto, Portugal, September 4-7, 2001, pp. 3540-3545.
  • 5
    • 84962795055 scopus 로고    scopus 로고
    • I. Baruch, J.M. Flores, F. Nava, I.R. Ramirez, B. Nenkova, An advanced neural network topology and learning applied for identification and control of a D.C. motor, in: Proc. First Int. IEEE Symp. on Intelligent Systems, Varna, Bulgaria, September, 2002, pp. 289-295.
    • I. Baruch, J.M. Flores, F. Nava, I.R. Ramirez, B. Nenkova, An advanced neural network topology and learning applied for identification and control of a D.C. motor, in: Proc. First Int. IEEE Symp. on Intelligent Systems, Varna, Bulgaria, September, 2002, pp. 289-295.
  • 6
    • 84958970477 scopus 로고    scopus 로고
    • I. Baruch, J.M. Flores, F. Thomas, R. Garrido, Adaptive neural control of nonlinear systems, in: G. Dorffner, H. Bischof, K. Hornik (Eds.), Proc. Int. Conf. on NNs, ICANN 2001, Vienna, Austria, August 2001, Lecture Notes in Computer Science, Vol. 2130, Springer, Berlin, Heidelberg, NY, 2001, pp. 930-936.
    • I. Baruch, J.M. Flores, F. Thomas, R. Garrido, Adaptive neural control of nonlinear systems, in: G. Dorffner, H. Bischof, K. Hornik (Eds.), Proc. Int. Conf. on NNs, ICANN 2001, Vienna, Austria, August 2001, Lecture Notes in Computer Science, Vol. 2130, Springer, Berlin, Heidelberg, NY, 2001, pp. 930-936.
  • 7
    • 49049104048 scopus 로고    scopus 로고
    • I. Baruch, E. Gortcheva, Fuzzy neural model for nonlinear systems identification, in: Proc. AARTC IFAC Workshop, Cancun, Mexico, April 15-17, 1998, pp. 283-288.
    • I. Baruch, E. Gortcheva, Fuzzy neural model for nonlinear systems identification, in: Proc. AARTC IFAC Workshop, Cancun, Mexico, April 15-17, 1998, pp. 283-288.
  • 8
    • 49049084926 scopus 로고    scopus 로고
    • I. Baruch, L.A. Hernandez, J. Barrera-Cortes, Adaptive discrete-time sliding mode control using recurrent neural networks, in: Proc. Second IFAC Symp. on System, Structure and Control, Oaxaca, Mexico, December 8-10, 2004, file [SSSC112.pdf].
    • I. Baruch, L.A. Hernandez, J. Barrera-Cortes, Adaptive discrete-time sliding mode control using recurrent neural networks, in: Proc. Second IFAC Symp. on System, Structure and Control, Oaxaca, Mexico, December 8-10, 2004, file [SSSC112.pdf].
  • 9
    • 0004068326 scopus 로고    scopus 로고
    • Topology and learning of a class RNN
    • Baruch I., Stoyanov I., and Gortcheva E. Topology and learning of a class RNN. ELEKTRIK 4 Suppl. (1996) 35-42
    • (1996) ELEKTRIK , vol.4 , Issue.SUPPL , pp. 35-42
    • Baruch, I.1    Stoyanov, I.2    Gortcheva, E.3
  • 10
    • 85131703146 scopus 로고    scopus 로고
    • I. Baruch, F. Thomas, R. Garrido, E. Gortcheva, A hybrid multi-model neural network for nonlinear systems identification, in: Proc. Int. Joint Conf. on Neural Networks, IJCNN'99, Washington DC, USA, July 10-16, 1999, pp. 4278-4283.
    • I. Baruch, F. Thomas, R. Garrido, E. Gortcheva, A hybrid multi-model neural network for nonlinear systems identification, in: Proc. Int. Joint Conf. on Neural Networks, IJCNN'99, Washington DC, USA, July 10-16, 1999, pp. 4278-4283.
  • 11
    • 0001657855 scopus 로고
    • Local feedback multilayered networks
    • Frasconi P., Gori M., and Soda G. Local feedback multilayered networks. Neural Comput. 4 (1992) 120-130
    • (1992) Neural Comput. , vol.4 , pp. 120-130
    • Frasconi, P.1    Gori, M.2    Soda, G.3
  • 12
    • 11244305511 scopus 로고    scopus 로고
    • NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches
    • Gao Y., and Er M.J. NARMAX time series model prediction: feedforward and recurrent fuzzy neural network approaches. Fuzzy Sets and Systems 150 2 (2005) 331-350
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 331-350
    • Gao, Y.1    Er, M.J.2
  • 13
    • 33645095444 scopus 로고    scopus 로고
    • Conditions of output stabilization for nonlinear models in the Takagi-Sugeno's form
    • Guerra T.M., Kruszewski A., Vermeiren L., and Tirmant H. Conditions of output stabilization for nonlinear models in the Takagi-Sugeno's form. Fuzzy Sets and Systems 157 (2006) 1248-1259
    • (2006) Fuzzy Sets and Systems , vol.157 , pp. 1248-1259
    • Guerra, T.M.1    Kruszewski, A.2    Vermeiren, L.3    Tirmant, H.4
  • 16
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Systems Man Cybernet. 23 3 (1993) 665-685
    • (1993) IEEE Trans. Systems Man Cybernet. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 17
    • 0142247180 scopus 로고    scopus 로고
    • Equilibria of recurrent fuzzy systems
    • Kempf R., and Adamy J. Equilibria of recurrent fuzzy systems. Fuzzy Sets and Systems 140 2 (2003) 231-257
    • (2003) Fuzzy Sets and Systems , vol.140 , Issue.2 , pp. 231-257
    • Kempf, R.1    Adamy, J.2
  • 18
    • 0029394283 scopus 로고
    • Robust adaptive stick-slip friction compensation
    • Lee S.W., and Kim J.H. Robust adaptive stick-slip friction compensation. IEEE Trans. Indust. Electron. 42 5 (1995) 474-479
    • (1995) IEEE Trans. Indust. Electron. , vol.42 , Issue.5 , pp. 474-479
    • Lee, S.W.1    Kim, J.H.2
  • 19
    • 11244339733 scopus 로고    scopus 로고
    • Identification and prediction using recurrent compensatory neuro-fuzzy systems
    • Lin C.J., and Chen C.H. Identification and prediction using recurrent compensatory neuro-fuzzy systems. Fuzzy Sets and Systems 150 2 (2005) 307-330
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 307-330
    • Lin, C.J.1    Chen, C.H.2
  • 20
    • 33644694908 scopus 로고    scopus 로고
    • A compensation-based recurrent fuzzy neural network for dynamic system identification
    • Lin C.J., and Chen C.H. A compensation-based recurrent fuzzy neural network for dynamic system identification. European J Oper. Res. 172 2 (2006) 696-715
    • (2006) European J Oper. Res. , vol.172 , Issue.2 , pp. 696-715
    • Lin, C.J.1    Chen, C.H.2
  • 23
    • 0142216225 scopus 로고    scopus 로고
    • An orthogonal least-squares method for recurrent fuzzy-neural modeling
    • Mastorocostas P.A., and Theocharis J.B. An orthogonal least-squares method for recurrent fuzzy-neural modeling. Fuzzy Sets and Systems 140 2 (2003) 285-300
    • (2003) Fuzzy Sets and Systems , vol.140 , Issue.2 , pp. 285-300
    • Mastorocostas, P.A.1    Theocharis, J.B.2
  • 24
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra K.S., and Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks 1 1 (1990) 4-27
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 25
    • 0037308138 scopus 로고    scopus 로고
    • A hierarchical recurrent neuro-fuzzy model for system identification
    • Nürnberger A. A hierarchical recurrent neuro-fuzzy model for system identification. Internat. J. Approx. Reason. 32 2-3 (2003) 153-170
    • (2003) Internat. J. Approx. Reason. , vol.32 , Issue.2-3 , pp. 153-170
    • Nürnberger, A.1
  • 26
    • 0037597542 scopus 로고    scopus 로고
    • Using recurrent neuro-fuzzy techniques for the identification and simulation of dynamic systems
    • Nürnberger A., Radetzky A., and Kruse R. Using recurrent neuro-fuzzy techniques for the identification and simulation of dynamic systems. Neurocomputing 36 1-4 (2001) 123-147
    • (2001) Neurocomputing , vol.36 , Issue.1-4 , pp. 123-147
    • Nürnberger, A.1    Radetzky, A.2    Kruse, R.3
  • 28
    • 49049107430 scopus 로고    scopus 로고
    • D.T. Pham, S. Yildirim, Robot control using Jordan neural networks, in: Proc. Internat. Conf. on Recent Advances in Mechatronics, Istanbul, Turkey, August 14-16, II, 1995, pp. 888-893.
    • D.T. Pham, S. Yildirim, Robot control using Jordan neural networks, in: Proc. Internat. Conf. on Recent Advances in Mechatronics, Istanbul, Turkey, August 14-16, II, 1995, pp. 888-893.
  • 30
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., and Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Systems Man Cybernet. 15 (1985) 116-132
    • (1985) IEEE Trans. Systems Man Cybernet. , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 31
    • 0033116173 scopus 로고    scopus 로고
    • Stabilizing controller design for uncertain nonlinear systems using fuzzy models
    • Teixeira M., and Zak S. Stabilizing controller design for uncertain nonlinear systems using fuzzy models. IEEE Trans. Systems Man Cybernet. 7 (1999) 133-142
    • (1999) IEEE Trans. Systems Man Cybernet. , vol.7 , pp. 133-142
    • Teixeira, M.1    Zak, S.2
  • 32
    • 28044450377 scopus 로고    scopus 로고
    • A high-order recurrent neuro-fuzzy system with internal dynamics: application to the adaptive noise cancellation
    • Theocharis J.B. A high-order recurrent neuro-fuzzy system with internal dynamics: application to the adaptive noise cancellation. Fuzzy Sets and Systems 157 4 (2006) 471-500
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.4 , pp. 471-500
    • Theocharis, J.B.1
  • 33
    • 0001317823 scopus 로고    scopus 로고
    • Diagrammatic method for deriving and relating temporal neural networks algorithms
    • Wan E., and Beaufays F. Diagrammatic method for deriving and relating temporal neural networks algorithms. Neural Comput. 8 (1996) 182-201
    • (1996) Neural Comput. , vol.8 , pp. 182-201
    • Wan, E.1    Beaufays, F.2
  • 34
    • 0028410031 scopus 로고
    • A recurrent neural net approach to one-step-ahead control problems
    • Yip P.P.C., and Pao Y.H. A recurrent neural net approach to one-step-ahead control problems. IEEE Trans. Systems Man Cybernet. 24 (1994) 678-683
    • (1994) IEEE Trans. Systems Man Cybernet. , vol.24 , pp. 678-683
    • Yip, P.P.C.1    Pao, Y.H.2
  • 35
    • 0035422763 scopus 로고    scopus 로고
    • A new type of recurrent fuzzy-neural network for modeling dynamic systems
    • Zhou S.M., and Xu L.D. A new type of recurrent fuzzy-neural network for modeling dynamic systems. Knowledge Based Systems 14 5-6 (2001) 243-251
    • (2001) Knowledge Based Systems , vol.14 , Issue.5-6 , pp. 243-251
    • Zhou, S.M.1    Xu, L.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.