메뉴 건너뛰기




Volumn 7, Issue 2, 2008, Pages 342-356

Identifying differences in protein expression levels by spectral counting and feature selection

Author keywords

Feature ranking; Feature selection; MudPIT; Spectral counting; Support vector machine

Indexed keywords

ANALYTIC METHOD; ARTICLE; LIQUID CHROMATOGRAPHY; MATHEMATICAL ANALYSIS; PROTEIN EXPRESSION; PROTEOMICS; SPECTROSCOPY; SUPPORT VECTOR MACHINE; TANDEM MASS SPECTROMETRY;

EID: 47949130351     PISSN: None     EISSN: 16765680     Source Type: Journal    
DOI: 10.4238/vol7-2gmr426     Document Type: Article
Times cited : (75)

References (34)
  • 1
    • 33744542119 scopus 로고    scopus 로고
    • On optimizing syntactic pattern recognition using tries and AI-based heuristic-search strategies
    • Badr G and Oommen BJ (2006). On optimizing syntactic pattern recognition using tries and AI-based heuristic-search strategies. IEEE Trans. Syst. Man. Cybern. B. Cybern. 36: 611-622.
    • (2006) IEEE Trans. Syst. Man. Cybern. B. Cybern , vol.36 , pp. 611-622
    • Badr, G.1    Oommen, B.J.2
  • 2
    • 0037024701 scopus 로고    scopus 로고
    • Chromatographic alignment by warping and dynamic programming as a pre-processing tool for PARAFAC modelling of liquid chromatography-mass spectrometry data
    • Bylund D, Danielsson R, Malmquist G and Markides KE (2002). Chromatographic alignment by warping and dynamic programming as a pre-processing tool for PARAFAC modelling of liquid chromatography-mass spectrometry data. J. Chromatogr. A 961: 237-244.
    • (2002) J. Chromatogr. A , vol.961 , pp. 237-244
    • Bylund, D.1    Danielsson, R.2    Malmquist, G.3    Markides, K.E.4
  • 3
    • 33744460787 scopus 로고    scopus 로고
    • BEAM: A beam search algorithm for the identification of cis-regulatory elements in groups of genes
    • Carlson JM, Chakravarty A and Gross RH (2006). BEAM: a beam search algorithm for the identification of cis-regulatory elements in groups of genes. J. Comput. Biol. 13: 686-701.
    • (2006) J. Comput. Biol , vol.13 , pp. 686-701
    • Carlson, J.M.1    Chakravarty, A.2    Gross, R.H.3
  • 4
    • 39049182067 scopus 로고    scopus 로고
    • Personalized diagnosis by cached solutions with hypertension as a study model
    • Carvalho PC, Freitas SS, Lima AB, Barros M, et al. (2006). Personalized diagnosis by cached solutions with hypertension as a study model. Genet. Mol. Res. 5: 856-867.
    • (2006) Genet. Mol. Res , vol.5 , pp. 856-867
    • Carvalho, P.C.1    Freitas, S.S.2    Lima, A.B.3    Barros, M.4
  • 5
    • 33947407619 scopus 로고    scopus 로고
    • Differential protein expression patterns obtained by mass spectrometry can aid in the diagnosis of Hodgkin's disease
    • Carvalho PC, Carvalho MG, Degrave W, Lilla S, et al. (2007). Differential protein expression patterns obtained by mass spectrometry can aid in the diagnosis of Hodgkin's disease. J. Exp. Ther. Oncol. 6: 137-145.
    • (2007) J. Exp. Ther. Oncol , vol.6 , pp. 137-145
    • Carvalho, P.C.1    Carvalho, M.G.2    Degrave, W.3    Lilla, S.4
  • 7
    • 0017368046 scopus 로고
    • On the possible orderings in the measurement selection problem
    • Cover TM and Van Campenhout JM (1977). On the possible orderings in the measurement selection problem. IEEE Trans. Syst. Man. Cybern. 7: 651-661.
    • (1977) IEEE Trans. Syst. Man. Cybern , vol.7 , pp. 651-661
    • Cover, T.M.1    Van Campenhout, J.M.2
  • 8
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, Huard C, et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286: 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4
  • 9
    • 4544354310 scopus 로고    scopus 로고
    • Swarm intelligence for mixed-variable design optimization
    • Guo CX, Hu JS, Ye B and Cao YJ (2004). Swarm intelligence for mixed-variable design optimization. J. Zhejiang. Univ. Sci. 5: 851-860.
    • (2004) J. Zhejiang. Univ. Sci , vol.5 , pp. 851-860
    • Guo, C.X.1    Hu, J.S.2    Ye, B.3    Cao, Y.J.4
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S and Vapnik V (2002). Gene selection for cancer classification using support vector machines. Mach. Learn. 46: 389-442.
    • (2002) Mach. Learn , vol.46 , pp. 389-442
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 11
    • 24044520992 scopus 로고    scopus 로고
    • A streamlined platform for high-content functional proteomics of primary human specimens
    • Jessani N, Niessen S, Wei BQ, Nicolau M, et al. (2005). A streamlined platform for high-content functional proteomics of primary human specimens. Nat. Methods 2: 691-697.
    • (2005) Nat. Methods , vol.2 , pp. 691-697
    • Jessani, N.1    Niessen, S.2    Wei, B.Q.3    Nicolau, M.4
  • 12
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • Scholkopf B, Burges C and Smola A, eds, MIT Press, Cambridge
    • Joachims T (1998). Making large-scale support vector machine learning practical. In: Advances in Kernel methods: support vector machines (Scholkopf B, Burges C and Smola A, eds.). MIT Press, Cambridge, 169-185.
    • (1998) Advances in Kernel methods: Support vector machines , pp. 169-185
    • Joachims, T.1
  • 13
    • 25444526868 scopus 로고    scopus 로고
    • Processing methods for differential analysis of LC/MS profile data
    • Katajamaa M and Oresic M (2005). Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics 6: 179.
    • (2005) BMC Bioinformatics , vol.6 , pp. 179
    • Katajamaa, M.1    Oresic, M.2
  • 14
    • 33644867564 scopus 로고    scopus 로고
    • MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data
    • Katajamaa M, Miettinen J and Oresic M (2006). MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22: 634-636.
    • (2006) Bioinformatics , vol.22 , pp. 634-636
    • Katajamaa, M.1    Miettinen, J.2    Oresic, M.3
  • 16
    • 0033051101 scopus 로고    scopus 로고
    • Direct analysis of protein complexes using mass spectrometry
    • Link AJ, Eng J, Schieltz DM, Carmack E, et al. (1999). Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17: 676-682.
    • (1999) Nat. Biotechnol , vol.17 , pp. 676-682
    • Link, A.J.1    Eng, J.2    Schieltz, D.M.3    Carmack, E.4
  • 17
    • 3242731195 scopus 로고    scopus 로고
    • A model for random sampling and estimation of relative protein abundance in shotgun proteomics
    • Liu H, Sadygov RG and Yates JR III (2004). A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76: 4193-4201.
    • (2004) Anal. Chem , vol.76 , pp. 4193-4201
    • Liu, H.1    Sadygov, R.G.2    Yates III, J.R.3
  • 18
    • 33748624597 scopus 로고    scopus 로고
    • Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies
    • Mattie MD, Benz CC, Bowers J, Sensinger K, et al. (2006). Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol. Cancer 5: 24.
    • (2006) Mol. Cancer , vol.5 , pp. 24
    • Mattie, M.D.1    Benz, C.C.2    Bowers, J.3    Sensinger, K.4
  • 19
    • 4444379642 scopus 로고    scopus 로고
    • Characterizing complex peptide mixtures using a multidimensional liquid chromatography-mass spectrometry system: Saccharomyces cerevisiae as a model system
    • Maynard DM, Masuda J, Yang X, Kowalak JA, et al. (2004). Characterizing complex peptide mixtures using a multidimensional liquid chromatography-mass spectrometry system: Saccharomyces cerevisiae as a model system. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 810: 69-76.
    • (2004) J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci , vol.810 , pp. 69-76
    • Maynard, D.M.1    Masuda, J.2    Yang, X.3    Kowalak, J.A.4
  • 20
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum to identify ovarian cancer
    • Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, et al. (2002). Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359: 572-577.
    • (2002) Lancet , vol.359 , pp. 572-577
    • Petricoin, E.F.1    Ardekani, A.M.2    Hitt, B.A.3    Levine, P.J.4
  • 21
    • 33646364037 scopus 로고    scopus 로고
    • Identification of metabolic system parameters using global optimization methods
    • Polisetty PK, Voit EO and Gatzke EP (2006). Identification of metabolic system parameters using global optimization methods. Theor. Biol. Med. Model. 3: 4.
    • (2006) Theor. Biol. Med. Model , vol.3 , pp. 4
    • Polisetty, P.K.1    Voit, E.O.2    Gatzke, E.P.3
  • 22
    • 0043064042 scopus 로고    scopus 로고
    • A hypergeometric probability model for protein identification and validation using tandem mass spectral data and protein sequence databases
    • Sadygov RG and Yates JR III (2003). A hypergeometric probability model for protein identification and validation using tandem mass spectral data and protein sequence databases. Anal. Chem. 75: 3792-3798.
    • (2003) Anal. Chem , vol.75 , pp. 3792-3798
    • Sadygov, R.G.1    Yates III, J.R.2
  • 23
    • 33645715647 scopus 로고    scopus 로고
    • VICMpred: An SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition
    • Saha S and Raghava GP (2006). VICMpred: an SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition. Genomics Proteomics Bioinformatics 4: 42-47.
    • (2006) Genomics Proteomics Bioinformatics , vol.4 , pp. 42-47
    • Saha, S.1    Raghava, G.P.2
  • 24
    • 4043081192 scopus 로고    scopus 로고
    • Data mining and genetic algorithm based gene/SNP selection
    • Shah SC and Kusiak A (2004). Data mining and genetic algorithm based gene/SNP selection. Artif. Intell. Med. 31: 183-196.
    • (2004) Artif. Intell. Med , vol.31 , pp. 183-196
    • Shah, S.C.1    Kusiak, A.2
  • 25
    • 0036393898 scopus 로고    scopus 로고
    • DTASelect and Contrast: Tools for assembling and comparing protein identifications from shotgun proteomics
    • Tabb DL, McDonald WH and Yates JR III (2002). DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1: 21-26.
    • (2002) J. Proteome Res , vol.1 , pp. 21-26
    • Tabb, D.L.1    McDonald, W.H.2    Yates III, J.R.3
  • 26
    • 19444386649 scopus 로고    scopus 로고
    • Prediction of siRNA functionality using generalized string kernel and support vector machine
    • Teramoto R, Aoki M, Kimura T and Kanaoka M (2005). Prediction of siRNA functionality using generalized string kernel and support vector machine. FEBS Lett. 579: 2878-2882.
    • (2005) FEBS Lett , vol.579 , pp. 2878-2882
    • Teramoto, R.1    Aoki, M.2    Kimura, T.3    Kanaoka, M.4
  • 27
    • 0343376097 scopus 로고    scopus 로고
    • Difference gel electrophoresis: A single gel method for detecting changes in protein extracts
    • Unlu M, Morgan ME and Minden JS (1997). Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18: 2071-2077.
    • (1997) Electrophoresis , vol.18 , pp. 2071-2077
    • Unlu, M.1    Morgan, M.E.2    Minden, J.S.3
  • 29
    • 10744233766 scopus 로고    scopus 로고
    • Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards
    • Wang W, Zhou H, Lin H, Roy S, et al. (2003). Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal. Chem. 75: 4818-4826.
    • (2003) Anal. Chem , vol.75 , pp. 4818-4826
    • Wang, W.1    Zhou, H.2    Lin, H.3    Roy, S.4
  • 30
    • 0035106351 scopus 로고    scopus 로고
    • Large-scale analysis of the yeast proteome by multidimensional protein identification technology
    • Washburn MP, Wolters D and Yates JR III (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19: 242-247.
    • (2001) Nat. Biotechnol , vol.19 , pp. 242-247
    • Washburn, M.P.1    Wolters, D.2    Yates III, J.R.3
  • 31
    • 6044226889 scopus 로고    scopus 로고
    • Differential mass spectrometry: A label-free LC-MS method for finding significant differences in complex peptide and protein mixtures
    • Wiener MC, Sachs JR, Deyanova EG and Yates NA (2004). Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal. Chem. 76: 6085-6096.
    • (2004) Anal. Chem , vol.76 , pp. 6085-6096
    • Wiener, M.C.1    Sachs, J.R.2    Deyanova, E.G.3    Yates, N.A.4
  • 32
    • 18744372755 scopus 로고    scopus 로고
    • SpecAlign - processing and alignment of mass spectra datasets
    • Wong JW, Cagney G and Cartwright HM (2005). SpecAlign - processing and alignment of mass spectra datasets. Bioinformatics 21: 2088-2090.
    • (2005) Bioinformatics , vol.21 , pp. 2088-2090
    • Wong, J.W.1    Cagney, G.2    Cartwright, H.M.3
  • 33
    • 33646510075 scopus 로고    scopus 로고
    • Predicting rRNA-, RNA-, and DNA-binding proteins from primary structure with support vector machines
    • Yu X, Cao J, Cai Y, Shi T, et al. (2006). Predicting rRNA-, RNA-, and DNA-binding proteins from primary structure with support vector machines. J. Theor. Biol. 240: 175-184.
    • (2006) J. Theor. Biol , vol.240 , pp. 175-184
    • Yu, X.1    Cao, J.2    Cai, Y.3    Shi, T.4
  • 34
    • 27744448038 scopus 로고    scopus 로고
    • Data pre-processing in liquid chromatography-mass spectrometry-based proteomics
    • Zhang X, Asara JM, Adamec J, Ouzzani M, et al. (2005). Data pre-processing in liquid chromatography-mass spectrometry-based proteomics. Bioinformatics 21: 4054-4059.
    • (2005) Bioinformatics , vol.21 , pp. 4054-4059
    • Zhang, X.1    Asara, J.M.2    Adamec, J.3    Ouzzani, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.