메뉴 건너뛰기




Volumn 15, Issue 6, 2008, Pages 625-637

Discovering high-order patterns of gene expression levels

Author keywords

Bioinformatics; Data mining; Gene expression; Microarray data; Pattern discovery

Indexed keywords

ARTICLE; COLON CANCER; CORRELATION ANALYSIS; DNA MICROARRAY; GENE CLUSTER; GENE EXPRESSION; GENE POOL; GENETIC ALGORITHM; INFORMATION PROCESSING; MATHEMATICAL COMPUTING; MATHEMATICAL GENETICS; METHODOLOGY; PRIORITY JOURNAL; STATISTICAL SIGNIFICANCE; TISSUE DISTRIBUTION; TUMOR GENE;

EID: 47549090441     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/cmb.2007.0147     Document Type: Article
Times cited : (7)

References (47)
  • 1
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • Agrawal, R., et al. 1993. Mining association rules between sets of items in large databases. SIGMOD 1993 207-216.
    • (1993) SIGMOD 1993 , pp. 207-216
    • Agrawal, R.1
  • 2
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules
    • Agrawal, R., and Srikant, R. 1994. Fast algorithms for mining association rules. VLDB 1994 487-499.
    • (1994) VLDB 1994 , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 3
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U., et al. 1999. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96, 6745-6750.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1
  • 4
    • 22944482840 scopus 로고    scopus 로고
    • Attribute clustering for grouping, selection, and classification of gene expression data
    • Au, W.-H., et al. 2005. Attribute clustering for grouping, selection, and classification of gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2, 83-101.
    • (2005) IEEE/ACM Trans. Comput. Biol. Bioinform , vol.2 , pp. 83-101
    • Au, W.-H.1
  • 5
    • 33645692386 scopus 로고    scopus 로고
    • A fuzzy approach to partitioning continuous attributes for classification
    • Au, W.-H., et al. 2006. A fuzzy approach to partitioning continuous attributes for classification. IEEE Trans. Knowl. Data Eng. 18, 715-719.
    • (2006) IEEE Trans. Knowl. Data Eng , vol.18 , pp. 715-719
    • Au, W.-H.1
  • 6
    • 33847766157 scopus 로고    scopus 로고
    • Correction to attribute clustering for grouping, selection, and classification of gene expression data
    • Au, W.-H., et al. 2007. Correction to "attribute clustering for grouping, selection, and classification of gene expression data." IEEE/ACM Trans. Comput. Biol. Bioinform. 4, 157.
    • (2007) IEEE/ACM Trans. Comput. Biol. Bioinform , vol.4 , pp. 157
    • Au, W.-H.1
  • 8
    • 0032728081 scopus 로고    scopus 로고
    • Clustering gene expression patterns
    • Ben-Dor, A., et al. 1999. Clustering gene expression patterns. J. Comput. Biol. 6, 281-297.
    • (1999) J. Comput. Biol , vol.6 , pp. 281-297
    • Ben-Dor, A.1
  • 9
    • 0033726356 scopus 로고    scopus 로고
    • Tissue classification with gene expression profiles
    • Ben-Dor, A., et al. 2000. Tissue classification with gene expression profiles. RECOMB 2000 54-64.
    • (2000) RECOMB 2000 , pp. 54-64
    • Ben-Dor, A.1
  • 11
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C. 1998. A tutorial on support vector machines for pattern recognition. Knowl. Dis. Data Mining 2, 121-167.
    • (1998) Knowl. Dis. Data Mining , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 12
    • 84990556423 scopus 로고
    • APACS: A system for the automatic analysis and classification of conceptual patterns
    • Chan, K.C.C., and Wong, A.K.C. 1990. APACS: a system for the automatic analysis and classification of conceptual patterns. Comput. Intell. 6, 119-131.
    • (1990) Comput. Intell , vol.6 , pp. 119-131
    • Chan, K.C.C.1    Wong, A.K.C.2
  • 13
    • 0000417939 scopus 로고
    • A statistical technique for extracting classificatory knowledge from databases
    • Piatetsky-Shapiro, G, and Frawley, W.J, eds, AAAI Press, Menlo Park, CA
    • Chan, K.C.C., and Wong, A.K.C. 1991. A statistical technique for extracting classificatory knowledge from databases, 107-123. In: Piatetsky-Shapiro, G., and Frawley, W.J., eds., Knowledge Discovery in Databases, AAAI Press, Menlo Park, CA.
    • (1991) Knowledge Discovery in Databases , pp. 107-123
    • Chan, K.C.C.1    Wong, A.K.C.2
  • 14
    • 0034566393 scopus 로고    scopus 로고
    • Biclustering of expression data
    • Cheng, Y., and Church, G.M. 2000. Biclustering of expression data. ISMB 2000 93-103.
    • (2000) ISMB 2000 , pp. 93-103
    • Cheng, Y.1    Church, G.M.2
  • 15
    • 9544246751 scopus 로고    scopus 로고
    • Multiple pattern associations for interpreting structural and functional characteristics of biomolecules
    • Chiu, D.K.Y., and Wong, A.K.C. 2004. Multiple pattern associations for interpreting structural and functional characteristics of biomolecules. Inf. Sci. 167, 23-39.
    • (2004) Inf. Sci , vol.167 , pp. 23-39
    • Chiu, D.K.Y.1    Wong, A.K.C.2
  • 16
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • Creighton, C., and Hanash, S. 2003. Mining gene expression databases for association rules. Bioinformatics 19, 79-86.
    • (2003) Bioinformatics , vol.19 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 17
    • 0036080361 scopus 로고    scopus 로고
    • Adaptive quality-based clustering of gene expression profiles
    • De Smet, F., et al. 2002. Adaptive quality-based clustering of gene expression profiles. Bioinformatics 18, 735-746.
    • (2002) Bioinformatics , vol.18 , pp. 735-746
    • De Smet, F.1
  • 18
    • 0037273544 scopus 로고    scopus 로고
    • Cluster analysis of gene expression data
    • Domany, E. 2003. Cluster analysis of gene expression data. J. Statist. Phys. 110, 1117-1139.
    • (2003) J. Statist. Phys , vol.110 , pp. 1117-1139
    • Domany, E.1
  • 19
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., et al. 2002. Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Statist. Assoc. 97, 77-87.
    • (2002) J. Am. Statist. Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1
  • 20
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen, M.B., et al. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 14863-14868
    • Eisen, M.B.1
  • 21
    • 0033691754 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman, N., et al. 2000. Using Bayesian networks to analyze expression data. RECOMB 2000 127-135.
    • (2000) RECOMB 2000 , pp. 127-135
    • Friedman, N.1
  • 22
    • 0002547839 scopus 로고
    • The analysis of residuals in cross-classified tables
    • Haberman, S.J. 1973. The analysis of residuals in cross-classified tables. Biometrics 29, 205-220.
    • (1973) Biometrics , vol.29 , pp. 205-220
    • Haberman, S.J.1
  • 25
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: A review
    • Jain, A.K., et al. 1999. Data clustering: a review. ACM Comput. Surveys 31, 264-323.
    • (1999) ACM Comput. Surveys , vol.31 , pp. 264-323
    • Jain, A.K.1
  • 26
    • 47549112196 scopus 로고    scopus 로고
    • Bayesian classification of DNA array expression data. Technical Report UW-CSE-2000-08-01, Department of Computer Science and Engineering, University of Washington
    • Keller, A.D., et al. 2000. Bayesian classification of DNA array expression data. Technical Report UW-CSE-2000-08-01, Department of Computer Science and Engineering, University of Washington, 2000.
    • (2000)
    • Keller, A.D.1
  • 27
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • Khan, J., et al. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7, 673-679.
    • (2001) Nat. Med , vol.7 , pp. 673-679
    • Khan, J.1
  • 28
    • 0024565429 scopus 로고
    • Regulation of the mRNA for monocyte-derived neutrophil-activing peptide in differentiating HL60 promyelocytes
    • Kowalski, J., and Denhardt, D.T. 1989. Regulation of the mRNA for monocyte-derived neutrophil-activing peptide in differentiating HL60 promyelocytes. Mol. Cell. Biol. 9, 1946-1957.
    • (1989) Mol. Cell. Biol , vol.9 , pp. 1946-1957
    • Kowalski, J.1    Denhardt, D.T.2
  • 29
    • 2542596956 scopus 로고    scopus 로고
    • Gene mining: A novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling
    • Li, X., et al. 2004. Gene mining: a novel and powerful ensemble decision approach to hunting for disease genes using microarray expression profiling. Nucletic Acids Res. 32, 2685-2694.
    • (2004) Nucletic Acids Res , vol.32 , pp. 2685-2694
    • Li, X.1
  • 30
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • Lippmann, R.P. 1987. An introduction to computing with neural nets. IEEE ASSP Magazine 4, 4-22.
    • (1987) IEEE ASSP Magazine , vol.4 , pp. 4-22
    • Lippmann, R.P.1
  • 31
    • 22944432786 scopus 로고    scopus 로고
    • A global optimal algorithm for class-dependent discretization of continuous data
    • Liu, L., et al. 2004. A global optimal algorithm for class-dependent discretization of continuous data. Intell. Data Anal. 8, 151-170.
    • (2004) Intell. Data Anal , vol.8 , pp. 151-170
    • Liu, L.1
  • 32
    • 0037623370 scopus 로고    scopus 로고
    • Cancer classification using gene expression data
    • Lu, Y., and Han, J. 2003. Cancer classification using gene expression data. Inf. Syst. 28, 243-268.
    • (2003) Inf. Syst , vol.28 , pp. 243-268
    • Lu, Y.1    Han, J.2
  • 36
    • 22944434817 scopus 로고    scopus 로고
    • Capturing best practice for microarray gene expression data analysis
    • Piatetsky-Shapiro, G., et al. 2003. Capturing best practice for microarray gene expression data analysis. SIGKDD 2003 407-415.
    • (2003) SIGKDD 2003 , pp. 407-415
    • Piatetsky-Shapiro, G.1
  • 38
    • 27544451127 scopus 로고    scopus 로고
    • Simple decision rules for classifying human cancers from gene expression profiles
    • Tan, A.C., et al. 2005. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 21, 3896-3904.
    • (2005) Bioinformatics , vol.21 , pp. 3896-3904
    • Tan, A.C.1
  • 39
    • 0037957011 scopus 로고    scopus 로고
    • From association to classification: Inference using weight of evidence
    • Wang, Y., and Wong, A.K.C. 2003. From association to classification: inference using weight of evidence. IEEE Trans. Knowl. Data Eng. 15, 914-925.
    • (2003) IEEE Trans. Knowl. Data Eng , vol.15 , pp. 914-925
    • Wang, Y.1    Wong, A.K.C.2
  • 41
    • 0016472476 scopus 로고
    • Typicality, diversity and feature patterns of an ensemble
    • Wong, A.K.C., and Liu, T.S. 1975. Typicality, diversity and feature patterns of an ensemble. IEEE Trans. Comput. C24, 158-181.
    • (1975) IEEE Trans. Comput , vol.C24 , pp. 158-181
    • Wong, A.K.C.1    Liu, T.S.2
  • 42
    • 0017285330 scopus 로고
    • Statistical analysis of residue variability in cytochrome c
    • Wong, A.K.C., et al. 1976. Statistical analysis of residue variability in cytochrome c. J. Mol. Biol. 102, 287-295.
    • (1976) J. Mol. Biol , vol.102 , pp. 287-295
    • Wong, A.K.C.1
  • 43
    • 0031274088 scopus 로고    scopus 로고
    • High-order pattern discovery from discrete-valued data
    • Wong, A.K.C., and Wang, Y. 1997. High-order pattern discovery from discrete-valued data. IEEE Trans. Knowl. Data Eng. 9, 877-893.
    • (1997) IEEE Trans. Knowl. Data Eng , vol.9 , pp. 877-893
    • Wong, A.K.C.1    Wang, Y.2
  • 44
    • 0037319582 scopus 로고    scopus 로고
    • Pattern discovery: A data driven approach to decision support
    • Wong, A.K.C., and Wang, Y. 2003. Pattern discovery: a data driven approach to decision support. IEEE Trans. Syst. Man Cybernet. Part C 33, 114-124.
    • (2003) IEEE Trans. Syst. Man Cybernet. Part C , vol.33 , pp. 114-124
    • Wong, A.K.C.1    Wang, Y.2
  • 45
    • 0031005161 scopus 로고    scopus 로고
    • Expression of high-mobility group-1 mRNA in human gastrointestinal adenocarcinoma and corresponding non-cancerous mucosa
    • Xiang, Y., et al. 1997. Expression of high-mobility group-1 mRNA in human gastrointestinal adenocarcinoma and corresponding non-cancerous mucosa. Int. J. Cancer 74, 1-6.
    • (1997) Int. J. Cancer , vol.74 , pp. 1-6
    • Xiang, Y.1
  • 46
    • 19044399684 scopus 로고    scopus 로고
    • Classification, subtype discovery and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • Yeoh, E.J., et al. 2002. Classification, subtype discovery and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1, 133-143.
    • (2002) Cancer Cell , vol.1 , pp. 133-143
    • Yeoh, E.J.1
  • 47
    • 0035810997 scopus 로고    scopus 로고
    • Recursive partitioning for tumor classification with gene expression microarray data
    • Zhang, H., et al. 2001. Recursive partitioning for tumor classification with gene expression microarray data. Proc. Natl. Acad. Sci. USA 98, 6730-6735.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 6730-6735
    • Zhang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.