메뉴 건너뛰기




Volumn 26, Issue 12, 2007, Pages 2519-2532

A ramdom-effects Markov transition model for poisson-distributed repeated measures with non-ignorable missing values

Author keywords

Markov transition models; Non ignorable missing values; Poisson regression model; Repeated measures; Shared parameter missingness

Indexed keywords

CARBON MONOXIDE; NICOTINE;

EID: 34249036469     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.2717     Document Type: Article
Times cited : (11)

References (22)
  • 1
    • 14144252238 scopus 로고    scopus 로고
    • A random effects transition model for longitudinal binary data with informative missingness
    • Albert PS, Follmann DA. A random effects transition model for longitudinal binary data with informative missingness. Statistica Neerlandica 2003; 57:100-111.
    • (2003) Statistica Neerlandica , vol.57 , pp. 100-111
    • Albert, P.S.1    Follmann, D.A.2
  • 5
    • 0029028456 scopus 로고
    • An approximate generalized linear model with random effects for informative missing data
    • Follman D, Wu M. An approximate generalized linear model with random effects for informative missing data. Biometrics 1995; 51:151-168.
    • (1995) Biometrics , vol.51 , pp. 151-168
    • Follman, D.1    Wu, M.2
  • 6
    • 14144255163 scopus 로고    scopus 로고
    • Assessing missing data assumptions in longitudinal studies: An example using a smoking cessation trial
    • Yang X, Shoptaw S. Assessing missing data assumptions in longitudinal studies: an example using a smoking cessation trial. Drug and Alcohol Dependence 2005; 77:213-225.
    • (2005) Drug and Alcohol Dependence , vol.77 , pp. 213-225
    • Yang, X.1    Shoptaw, S.2
  • 8
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB. Inference and missing data. Biometrika 1976; 63:581-582.
    • (1976) Biometrika , vol.63 , pp. 581-582
    • Rubin, D.B.1
  • 12
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73:13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.Y.1    Zeger, S.L.2
  • 17
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with Discussion)
    • Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation (with Discussion). Journal of the American Statistical Association 1987; 82:528-550.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 18
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks WR, Wild P. Adaptive rejection sampling for Gibbs sampling. Applied Statistics 1992; 41:337-348.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 19
    • 0000940729 scopus 로고
    • Facilitating the Gibbs sampler: The Gibbs stopper and the Griddy-Gibbs sampler
    • Ritter C, Tanner MA. Facilitating the Gibbs sampler: the Gibbs stopper and the Griddy-Gibbs sampler. Journal of the American Statistical Society 1992; 87:861-868.
    • (1992) Journal of the American Statistical Society , vol.87 , pp. 861-868
    • Ritter, C.1    Tanner, M.A.2
  • 20
    • 0033936551 scopus 로고    scopus 로고
    • Modeling longitudinal count data subject to dropout
    • Albert PS, Follmann DA. Modeling longitudinal count data subject to dropout. Biometrics 2000; 56:602-608.
    • (2000) Biometrics , vol.56 , pp. 602-608
    • Albert, P.S.1    Follmann, D.A.2
  • 22
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70:41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.