-
4
-
-
2342575740
-
-
B. Bourlon, D. C. Glattli, C. Miko, L. Forro, A. Bachtold, Nano Lett. 4, 709 (2004).
-
(2004)
Nano Lett
, vol.4
, pp. 709
-
-
Bourlon, B.1
Glattli, D.C.2
Miko, C.3
Forro, L.4
Bachtold, A.5
-
5
-
-
2342437023
-
-
B. C. Regan, S. Aloni, R. O. Ritchie, U. Dahmen, A. Zettl, Nature 428, 924 (2004).
-
(2004)
Nature
, vol.428
, pp. 924
-
-
Regan, B.C.1
Aloni, S.2
Ritchie, R.O.3
Dahmen, U.4
Zettl, A.5
-
7
-
-
34547726340
-
-
D. Golberg et al., Adv. Mater. 19, 1937 (2007).
-
(2007)
Adv. Mater
, vol.19
, pp. 1937
-
-
Golberg, D.1
-
8
-
-
0001563670
-
-
R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, M. S. Dresselhaus, Chem. Phys. Lett. 348, 187 (2001).
-
(2001)
Chem. Phys. Lett
, vol.348
, pp. 187
-
-
Saito, R.1
Matsuo, R.2
Kimura, T.3
Dresselhaus, G.4
Dresselhaus, M.S.5
-
10
-
-
33749666233
-
-
P. A. E. Schoen, J. H. Walther, S. Arcidiacono, D. Poulikakos, P. Koumoutsakos, Nano Lett. 6, 1910 (2006).
-
(2006)
Nano Lett
, vol.6
, pp. 1910
-
-
Schoen, P.A.E.1
Walther, J.H.2
Arcidiacono, S.3
Poulikakos, D.4
Koumoutsakos, P.5
-
11
-
-
34547247876
-
-
P. A. E. Schoen, J. H. Walther, D. Poulikakos, P. Koumoutsakos, Appl. Phys. Lett. 90, 253116 (2007).
-
(2007)
Appl. Phys. Lett
, vol.90
, pp. 253116
-
-
Schoen, P.A.E.1
Walther, J.H.2
Poulikakos, D.3
Koumoutsakos, P.4
-
18
-
-
0035794576
-
-
P. G. Collins, M. Hersam, M. Arnold, R. Martel, Ph. Avouris, Phys. Rev. Lett. 86, 3128 (2001).
-
(2001)
Phys. Rev. Lett
, vol.86
, pp. 3128
-
-
Collins, P.G.1
Hersam, M.2
Arnold, M.3
Martel, R.4
Avouris, P.5
-
20
-
-
46649115970
-
-
Most of the low-resistive devices engineered with the electrical-breakdown technique can be actuated with an electron current, although this is never the case for the non-engineered devices 21
-
Most of the low-resistive devices engineered with the electrical-breakdown technique can be actuated with an electron current, although this is never the case for the non-engineered devices (21).
-
-
-
-
21
-
-
46649105343
-
-
Materials and methods are available as supporting material on Science Online.
-
Materials and methods are available as supporting material on Science Online.
-
-
-
-
23
-
-
33745908289
-
-
A. Kis, K. Jensen, S. Aloni, W. Mickelson, A. Zettl, Phys. Rev. Lett. 97, 025501 (2006).
-
(2006)
Phys. Rev. Lett
, vol.97
, pp. 025501
-
-
Kis, A.1
Jensen, K.2
Aloni, S.3
Mickelson, W.4
Zettl, A.5
-
26
-
-
18044376803
-
-
G. S. Kottas, L. I. Clarke, D. Horinek, J. Michl, Chem. Rev. 105, 1281 (2005).
-
(2005)
Chem. Rev
, vol.105
, pp. 1281
-
-
Kottas, G.S.1
Clarke, L.I.2
Horinek, D.3
Michl, J.4
-
28
-
-
46649119120
-
-
We do not observe any change of the electron resistance when comparing samples with and without gold cargoes. As a result, we do not expect a substantial modification of the spatial temperature profile in these two configurations. A direct consequence of this temperature profile is that the speed of the cargo is not constant along the nanotube. It is highest near the midpoint of the tube and lowest near the contacts fig. S2
-
We do not observe any change of the electron resistance when comparing samples with and without gold cargoes. As a result, we do not expect a substantial modification of the spatial temperature profile in these two configurations. A direct consequence of this temperature profile is that the speed of the cargo is not constant along the nanotube. It is highest near the midpoint of the tube and lowest near the contacts (fig. S2).
-
-
-
-
29
-
-
46649114637
-
-
The temperature profile is likely to be slightly asymmetric with respect to the middle of the nanotube resulting from, for example, different contact resistances. As a result, the mobile element can move even if it is placed exactly in the middle of the nanotube
-
The temperature profile is likely to be slightly asymmetric with respect to the middle of the nanotube resulting from, for example, different contact resistances. As a result, the mobile element can move even if it is placed exactly in the middle of the nanotube.
-
-
-
-
32
-
-
46649090794
-
-
We thank J. Llobet, G. Rius, and X. Borrisé for valuable help with the experiments, as well as P. Ordejon and M. Monthioux for discussions. Financial support from a European Young Investigator grant, the European Union-funded project FP6-IST-021285-2, the grants FIS2006-12117-C04 and TEC2006-13731-C02-01 from the Ministerio de Educación y Ciencia, a Ramón y Cajal Fellowship, and the grant 2005SGR683 from Agència de Gestió d'Ajuts Universitaris i de Recerca is acknowledged. The work in Lausanne was supported by the Swiss NSF and its National Centres of Competence in Research Nanoscale Science
-
We thank J. Llobet, G. Rius, and X. Borrisé for valuable help with the experiments, as well as P. Ordejon and M. Monthioux for discussions. Financial support from a European Young Investigator grant, the European Union-funded project FP6-IST-021285-2, the grants FIS2006-12117-C04 and TEC2006-13731-C02-01 from the Ministerio de Educación y Ciencia, a Ramón y Cajal Fellowship, and the grant 2005SGR683 from Agència de Gestió d'Ajuts Universitaris i de Recerca is acknowledged. The work in Lausanne was supported by the Swiss NSF and its National Centres of Competence in Research "Nanoscale Science."
-
-
-
|