메뉴 건너뛰기




Volumn 9, Issue , 2008, Pages 1147-1178

Cross-validation optimization for large scale structured classification kernel methods

Author keywords

Cross validation optimization; Hierarchical classification; Kernel logistic regression; Multi way classification; Newton Raphson optimization

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONJUGATE GRADIENT METHOD; GRADIENT METHODS; KETONES; MATRIX ALGEBRA; OPTIMIZATION; PARAMETER ESTIMATION; SHAPE OPTIMIZATION; TEXT PROCESSING; VECTORS;

EID: 46249123756     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (23)

References (36)
  • 2
    • 9444239294 scopus 로고    scopus 로고
    • Sparseness vs estimating conditional probabilities: Some asymptotic results
    • Springer
    • P. Bartlett and A. Tewari. Sparseness vs estimating conditional probabilities: Some asymptotic results. In Conference on Computational Learning Theory 17, pages 564-578. Springer, 2004.
    • (2004) Conference on Computational Learning Theory , vol.17 , pp. 564-578
    • Bartlett, P.1    Tewari, A.2
  • 5
    • 18744367558 scopus 로고    scopus 로고
    • Hierarchical document categorization with support vector machines
    • L. Cai and T. Hofmann. Hierarchical document categorization with support vector machines. In CIKM 13, pages 78-87, 2004.
    • (2004) CIKM 13 , pp. 78-87
    • Cai, L.1    Hofmann, T.2
  • 6
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2:265-292, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 7
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
    • P. Craven and G. Wahba. Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik, 31:377-403, 1979.
    • (1979) Numerische Mathematik , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 10
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of Roy. Stat. Soc. B, 39:1-38, 1977.
    • (1977) Journal of Roy. Stat. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 13
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 13:415-425, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 14
    • 21844461582 scopus 로고    scopus 로고
    • A modified finite Newton method for fast solution of large scale linear SVMs
    • S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large scale linear SVMs. Journal of Machine Learning Research, 6:341-361, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 341-361
    • Keerthi, S.1    DeCoste, D.2
  • 15
    • 84864039082 scopus 로고    scopus 로고
    • An efficient method for gradient-based adaptation of hyperparameters in SVM models
    • B. Schölkopf, J. Platt, and T. Hofmann, editors, MIT Press
    • S. Keerthi, V. Sindhwani, and O. Chapelle. An efficient method for gradient-based adaptation of hyperparameters in SVM models. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural Information Processing Systems 19. MIT Press, 2007.
    • (2007) Advances in Neural Information Processing Systems 19
    • Keerthi, S.1    Sindhwani, V.2    Chapelle, O.3
  • 16
    • 33646426783 scopus 로고    scopus 로고
    • Kernel conditional random fields: Representation, clique selection, and semi-supervised learning
    • Technical Report CMU-CS-04-115, Carnegie Mellon University
    • J. Lafferty, Y. Liu, and X. Zhu. Kernel conditional random fields: Representation, clique selection, and semi-supervised learning. Technical Report CMU-CS-04-115, Carnegie Mellon University, 2004.
    • (2004)
    • Lafferty, J.1    Liu, Y.2    Zhu, X.3
  • 19
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: Mean field algorithms
    • M. Opper and O. Winther. Gaussian processes for classification: Mean field algorithms. Neural Computation, 12(11):2655-2684, 2000.
    • (2000) Neural Computation , vol.12 , Issue.11 , pp. 2655-2684
    • Opper, M.1    Winther, O.2
  • 20
    • 0000255539 scopus 로고
    • Fast exact multiplication by the Hessian
    • B. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 6(1): 147-160, 1994.
    • (1994) Neural Computation , vol.6 , Issue.1 , pp. 147-160
    • Pearlmutter, B.1
  • 21
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schölkopf, C. Burges, and A. Smola, editors, MIT Press
    • J. Piatt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 185-208. MIT Press, 1998.
    • (1998) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Piatt, J.1
  • 22
  • 27
    • 12444291490 scopus 로고    scopus 로고
    • Gaussian processes for machine learning
    • M. Seeger. Gaussian processes for machine learning. International Journal of Neural Systems, 14 (2):69-106, 2004.
    • (2004) International Journal of Neural Systems , vol.14 , Issue.2 , pp. 69-106
    • Seeger, M.1
  • 28
    • 46249109879 scopus 로고    scopus 로고
    • Cross-validation optimization for large scale hierarchical classification kernel methods
    • B. Schölkopf, J. Platt, and T. Hofmann, editors, MIT Press
    • M. Seeger. Cross-validation optimization for large scale hierarchical classification kernel methods. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural Information Processing Systems 19, pages 1233-1240. MIT Press, 2007.
    • (2007) Advances in Neural Information Processing Systems 19 , pp. 1233-1240
    • Seeger, M.1
  • 29
    • 46249113842 scopus 로고    scopus 로고
    • Improving classification when a class hierarchy is available using a hierarchy-based prior
    • B. Shahbaba and R. Neal. Improving classification when a class hierarchy is available using a hierarchy-based prior. Bayesian Analysis, 2(1):221-238, 2007.
    • (2007) Bayesian Analysis , vol.2 , Issue.1 , pp. 221-238
    • Shahbaba, B.1    Neal, R.2
  • 30
    • 48149106974 scopus 로고    scopus 로고
    • Fast Gaussian process regression using KD-trees
    • Y. Weiss, B. Schölkopf, and J. Piatt, editors, MIT Press
    • Y. Shen, A. Ng, and M. Seeger. Fast Gaussian process regression using KD-trees. In Y. Weiss, B. Schölkopf, and J. Piatt, editors, Advances in Neural Information Processing Systems 18. MIT Press, 2006.
    • (2006) Advances in Neural Information Processing Systems 18
    • Shen, Y.1    Ng, A.2    Seeger, M.3
  • 31
    • 84864038646 scopus 로고    scopus 로고
    • Sparse Gaussian processes using pseudo-inputs
    • Y. Weiss, B. Schölkopf, and J. Piatt, editors, MIT Press
    • E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y. Weiss, B. Schölkopf, and J. Piatt, editors, Advances in Neural Information Processing Systems 18. MIT Press, 2006.
    • (2006) Advances in Neural Information Processing Systems 18
    • Snelson, E.1    Ghahramani, Z.2
  • 32
    • 84862602372 scopus 로고    scopus 로고
    • Y.-W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. In Z. Ghahramani and R. Cowell, editors, Workshop on Artificial Intelligence and Statistics 10, 2005.
    • Y.-W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. In Z. Ghahramani and R. Cowell, editors, Workshop on Artificial Intelligence and Statistics 10, 2005.
  • 33
    • 0003241881 scopus 로고
    • Spline Models for Observational Data
    • Society for Industrial and Applied Mathematics
    • G. Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference Series. Society for Industrial and Applied Mathematics, 1990.
    • (1990) CBMS-NSF Regional Conference Series
    • Wahba, G.1
  • 36
    • 84898938795 scopus 로고    scopus 로고
    • Efficient kernel machines using the improved fast Gauss transform
    • L. Saul, Y. Weiss, and L. Bottou, editors, MIT Press
    • C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 1561-1568. MIT Press, 2005.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 1561-1568
    • Yang, C.1    Duraiswami, R.2    Davis, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.