-
2
-
-
9444239294
-
Sparseness vs estimating conditional probabilities: Some asymptotic results
-
Springer
-
P. Bartlett and A. Tewari. Sparseness vs estimating conditional probabilities: Some asymptotic results. In Conference on Computational Learning Theory 17, pages 564-578. Springer, 2004.
-
(2004)
Conference on Computational Learning Theory
, vol.17
, pp. 564-578
-
-
Bartlett, P.1
Tewari, A.2
-
5
-
-
18744367558
-
Hierarchical document categorization with support vector machines
-
L. Cai and T. Hofmann. Hierarchical document categorization with support vector machines. In CIKM 13, pages 78-87, 2004.
-
(2004)
CIKM 13
, pp. 78-87
-
-
Cai, L.1
Hofmann, T.2
-
6
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2:265-292, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
7
-
-
34250263445
-
Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
-
P. Craven and G. Wahba. Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik, 31:377-403, 1979.
-
(1979)
Numerische Mathematik
, vol.31
, pp. 377-403
-
-
Craven, P.1
Wahba, G.2
-
9
-
-
0031120321
-
Inducing features of random fields
-
S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380-393, 1997.
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.4
, pp. 380-393
-
-
Della Pietra, S.1
Della Pietra, V.2
Lafferty, J.3
-
10
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of Roy. Stat. Soc. B, 39:1-38, 1977.
-
(1977)
Journal of Roy. Stat. Soc. B
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
13
-
-
0036505670
-
A comparison of methods for multi-class support vector machines
-
C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 13:415-425, 2002.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
14
-
-
21844461582
-
A modified finite Newton method for fast solution of large scale linear SVMs
-
S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large scale linear SVMs. Journal of Machine Learning Research, 6:341-361, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 341-361
-
-
Keerthi, S.1
DeCoste, D.2
-
15
-
-
84864039082
-
An efficient method for gradient-based adaptation of hyperparameters in SVM models
-
B. Schölkopf, J. Platt, and T. Hofmann, editors, MIT Press
-
S. Keerthi, V. Sindhwani, and O. Chapelle. An efficient method for gradient-based adaptation of hyperparameters in SVM models. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural Information Processing Systems 19. MIT Press, 2007.
-
(2007)
Advances in Neural Information Processing Systems 19
-
-
Keerthi, S.1
Sindhwani, V.2
Chapelle, O.3
-
16
-
-
33646426783
-
Kernel conditional random fields: Representation, clique selection, and semi-supervised learning
-
Technical Report CMU-CS-04-115, Carnegie Mellon University
-
J. Lafferty, Y. Liu, and X. Zhu. Kernel conditional random fields: Representation, clique selection, and semi-supervised learning. Technical Report CMU-CS-04-115, Carnegie Mellon University, 2004.
-
(2004)
-
-
Lafferty, J.1
Liu, Y.2
Zhu, X.3
-
17
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation, 1:541-551, 1989.
-
(1989)
Neural Computation
, vol.1
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.3
Henderson, D.4
Howard, R.5
Hubbard, W.6
Jackel, L.7
-
19
-
-
0034320350
-
Gaussian processes for classification: Mean field algorithms
-
M. Opper and O. Winther. Gaussian processes for classification: Mean field algorithms. Neural Computation, 12(11):2655-2684, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.11
, pp. 2655-2684
-
-
Opper, M.1
Winther, O.2
-
20
-
-
0000255539
-
Fast exact multiplication by the Hessian
-
B. Pearlmutter. Fast exact multiplication by the Hessian. Neural Computation, 6(1): 147-160, 1994.
-
(1994)
Neural Computation
, vol.6
, Issue.1
, pp. 147-160
-
-
Pearlmutter, B.1
-
21
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. Burges, and A. Smola, editors, MIT Press
-
J. Piatt. Fast training of support vector machines using sequential minimal optimization. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods: Support Vector Learning, pages 185-208. MIT Press, 1998.
-
(1998)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Piatt, J.1
-
22
-
-
14344253847
-
Predictive automatic relevance determination by expectation propagation
-
C. Brodley, editor, Morgan Kaufmann
-
Y. Qi, T. Minka, R. Picard, and Z. Ghahramani. Predictive automatic relevance determination by expectation propagation. In C. Brodley, editor, International Conference on Machine Learning 21. Morgan Kaufmann, 2004.
-
(2004)
International Conference on Machine Learning 21
-
-
Qi, Y.1
Minka, T.2
Picard, R.3
Ghahramani, Z.4
-
27
-
-
12444291490
-
Gaussian processes for machine learning
-
M. Seeger. Gaussian processes for machine learning. International Journal of Neural Systems, 14 (2):69-106, 2004.
-
(2004)
International Journal of Neural Systems
, vol.14
, Issue.2
, pp. 69-106
-
-
Seeger, M.1
-
28
-
-
46249109879
-
Cross-validation optimization for large scale hierarchical classification kernel methods
-
B. Schölkopf, J. Platt, and T. Hofmann, editors, MIT Press
-
M. Seeger. Cross-validation optimization for large scale hierarchical classification kernel methods. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in Neural Information Processing Systems 19, pages 1233-1240. MIT Press, 2007.
-
(2007)
Advances in Neural Information Processing Systems 19
, pp. 1233-1240
-
-
Seeger, M.1
-
29
-
-
46249113842
-
Improving classification when a class hierarchy is available using a hierarchy-based prior
-
B. Shahbaba and R. Neal. Improving classification when a class hierarchy is available using a hierarchy-based prior. Bayesian Analysis, 2(1):221-238, 2007.
-
(2007)
Bayesian Analysis
, vol.2
, Issue.1
, pp. 221-238
-
-
Shahbaba, B.1
Neal, R.2
-
30
-
-
48149106974
-
Fast Gaussian process regression using KD-trees
-
Y. Weiss, B. Schölkopf, and J. Piatt, editors, MIT Press
-
Y. Shen, A. Ng, and M. Seeger. Fast Gaussian process regression using KD-trees. In Y. Weiss, B. Schölkopf, and J. Piatt, editors, Advances in Neural Information Processing Systems 18. MIT Press, 2006.
-
(2006)
Advances in Neural Information Processing Systems 18
-
-
Shen, Y.1
Ng, A.2
Seeger, M.3
-
31
-
-
84864038646
-
Sparse Gaussian processes using pseudo-inputs
-
Y. Weiss, B. Schölkopf, and J. Piatt, editors, MIT Press
-
E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y. Weiss, B. Schölkopf, and J. Piatt, editors, Advances in Neural Information Processing Systems 18. MIT Press, 2006.
-
(2006)
Advances in Neural Information Processing Systems 18
-
-
Snelson, E.1
Ghahramani, Z.2
-
32
-
-
84862602372
-
-
Y.-W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. In Z. Ghahramani and R. Cowell, editors, Workshop on Artificial Intelligence and Statistics 10, 2005.
-
Y.-W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. In Z. Ghahramani and R. Cowell, editors, Workshop on Artificial Intelligence and Statistics 10, 2005.
-
-
-
-
33
-
-
0003241881
-
Spline Models for Observational Data
-
Society for Industrial and Applied Mathematics
-
G. Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference Series. Society for Industrial and Applied Mathematics, 1990.
-
(1990)
CBMS-NSF Regional Conference Series
-
-
Wahba, G.1
-
34
-
-
0002295913
-
Gaussian processes for regression
-
D. Touretzky, M. Mozer, and M. Hasselmo, editors, MIT Press
-
C. Williams and C. Rasmussen. Gaussian processes for regression. In D. Touretzky, M. Mozer, and M. Hasselmo, editors, Advances in Neural Information Processing Systems 8. MIT Press, 1996.
-
(1996)
Advances in Neural Information Processing Systems 8
-
-
Williams, C.1
Rasmussen, C.2
-
36
-
-
84898938795
-
Efficient kernel machines using the improved fast Gauss transform
-
L. Saul, Y. Weiss, and L. Bottou, editors, MIT Press
-
C. Yang, R. Duraiswami, and L. Davis. Efficient kernel machines using the improved fast Gauss transform. In L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 1561-1568. MIT Press, 2005.
-
(2005)
Advances in Neural Information Processing Systems 17
, pp. 1561-1568
-
-
Yang, C.1
Duraiswami, R.2
Davis, L.3
|