메뉴 건너뛰기




Volumn 100, Issue 4, 2008, Pages 797-802

In situ protein folding and activation in bacterial inclusion bodies

Author keywords

DnaK; Enzymatic activity; Inclusion bodies; Protein folding

Indexed keywords

AMINES; BACTERIOLOGY; BIOMOLECULES; INTEGRAL EQUATIONS; PROTEINS;

EID: 46249118932     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.21797     Document Type: Article
Times cited : (31)

References (44)
  • 1
    • 0344395589 scopus 로고    scopus 로고
    • FT-IR study of heterologous protein expression in recombinant Escherichia coli strains
    • Ami D, Bonecchi L, Cali S, Orsini G, Tonon G, Doglia SM. 2003. FT-IR study of heterologous protein expression in recombinant Escherichia coli strains. Biochim Biophys Acta 1624:6-10.
    • (2003) Biochim Biophys Acta , vol.1624 , pp. 6-10
    • Ami, D.1    Bonecchi, L.2    Cali, S.3    Orsini, G.4    Tonon, G.5    Doglia, S.M.6
  • 2
    • 20444363444 scopus 로고    scopus 로고
    • Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy
    • Ami D, Natalello A, Gatti-Lafranconi P, Lotti M, Doglia SM. 2005. Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy. FEBS Lett 579:3433-3436.
    • (2005) FEBS Lett , vol.579 , pp. 3433-3436
    • Ami, D.1    Natalello, A.2    Gatti-Lafranconi, P.3    Lotti, M.4    Doglia, S.M.5
  • 3
    • 33646589053 scopus 로고    scopus 로고
    • Structural analysts of protein inclusion bodies by Fourier transform infrared microspectroscopy
    • Ami D, Natalello A, Taylor G, Tonon G, Doglia SM. 2006. Structural analysts of protein inclusion bodies by Fourier transform infrared microspectroscopy. Biochim Biophys Acta 1764:793-799.
    • (2006) Biochim Biophys Acta , vol.1764 , pp. 793-799
    • Ami, D.1    Natalello, A.2    Taylor, G.3    Tonon, G.4    Doglia, S.M.5
  • 4
    • 33749164003 scopus 로고    scopus 로고
    • Formation of active inclusion bodies in the periplasm of Escherichia coli
    • Arie JP, Miot M, Sassoon N, Betton JM. 2006. Formation of active inclusion bodies in the periplasm of Escherichia coli. Mol Microbiol 62:427-437.
    • (2006) Mol Microbiol , vol.62 , pp. 427-437
    • Arie, J.P.1    Miot, M.2    Sassoon, N.3    Betton, J.M.4
  • 5
    • 0035951410 scopus 로고    scopus 로고
    • Protein aggregation as bacterial inclusion bodies is reversible
    • Carrio MM, Villaverde A. 2001. Protein aggregation as bacterial inclusion bodies is reversible. FEBS Lett 489:29-33.
    • (2001) FEBS Lett , vol.489 , pp. 29-33
    • Carrio, M.M.1    Villaverde, A.2
  • 6
    • 0037071906 scopus 로고    scopus 로고
    • Construction and deconstruction of bacterial inclusion bodies
    • Carrio MM, Villaverde A. 2002. Construction and deconstruction of bacterial inclusion bodies. J Biotechnol 96:3-12.
    • (2002) J Biotechnol , vol.96 , pp. 3-12
    • Carrio, M.M.1    Villaverde, A.2
  • 7
    • 0037468523 scopus 로고    scopus 로고
    • Role of molecular chaperones in inclusion bodv formation
    • Carrio MM, Villaverde A. 2003. Role of molecular chaperones in inclusion bodv formation. FEBS Lett 537:215-221.
    • (2003) FEBS Lett , vol.537 , pp. 215-221
    • Carrio, M.M.1    Villaverde, A.2
  • 8
    • 18244398660 scopus 로고    scopus 로고
    • Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. 1
    • Carrio MM, Villaverde A. 2005. Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. 1 Bacteriol 187:3599-3601.
    • (2005) Bacteriol , vol.187 , pp. 3599-3601
    • Carrio, M.M.1    Villaverde, A.2
  • 9
    • 0031734071 scopus 로고    scopus 로고
    • Dynamics of in vivo protein aggregation: Building inclusion bodies in recombinant bacteria
    • Carrio MM, Corchero JL, Villaverde A. 1998. Dynamics of in vivo protein aggregation: Building inclusion bodies in recombinant bacteria. FEMS Microbiol Lett 169:9-15.
    • (1998) FEMS Microbiol Lett , vol.169 , pp. 9-15
    • Carrio, M.M.1    Corchero, J.L.2    Villaverde, A.3
  • 10
    • 0034616258 scopus 로고    scopus 로고
    • Fine architecture of bacterial inclusion bodies
    • Carrio MM, Cubarsi R, Villaverde A. 2000. Fine architecture of bacterial inclusion bodies. FEBS Lett 471:7-11.
    • (2000) FEBS Lett , vol.471 , pp. 7-11
    • Carrio, M.M.1    Cubarsi, R.2    Villaverde, A.3
  • 12
    • 0032551301 scopus 로고    scopus 로고
    • Plasmid maintenance in Escherichia coli recombinant cultures is dramatically, steadily, and specifically influenced by features of the encoded proteins
    • Corchero JL, Villaverde A. 1998. Plasmid maintenance in Escherichia coli recombinant cultures is dramatically, steadily, and specifically influenced by features of the encoded proteins. Biotechnol Bioeng 58:625-632.
    • (1998) Biotechnol Bioeng , vol.58 , pp. 625-632
    • Corchero, J.L.1    Villaverde, A.2
  • 13
    • 23044456332 scopus 로고    scopus 로고
    • Characterization of the aggregates formed during recombinant protein expression in bacteria
    • de Marco A, Schroedel A. 2005. Characterization of the aggregates formed during recombinant protein expression in bacteria. BMC Biochem 6: 10.
    • (2005) BMC Biochem , vol.6 , pp. 10
    • de Marco, A.1    Schroedel, A.2
  • 14
    • 0026794451 scopus 로고
    • Secondary structure of the pentraxin female protein in water determined by infrared spectroscopy: Effects of calcium and phosphorylcholine
    • Dong A, Caughey B, Caughey WS, Bhat KS, Coe JE. 1992. Secondary structure of the pentraxin female protein in water determined by infrared spectroscopy: Effects of calcium and phosphorylcholine. Biochemistry 31:9364-9370.
    • (1992) Biochemistry , vol.31 , pp. 9364-9370
    • Dong, A.1    Caughey, B.2    Caughey, W.S.3    Bhat, K.S.4    Coe, J.E.5
  • 15
    • 0031573469 scopus 로고    scopus 로고
    • Spectroscopic study of secondary structure and thermal dena-turation of recombinant human factor XIII in aqueous solution
    • Dong A, Kendrick B, Kreilgard L, Matsuura J, Manning MC, Carpenter JF. 1997. Spectroscopic study of secondary structure and thermal dena-turation of recombinant human factor XIII in aqueous solution. Arch Biochem Biophys 347:213-220.
    • (1997) Arch Biochem Biophys , vol.347 , pp. 213-220
    • Dong, A.1    Kendrick, B.2    Kreilgard, L.3    Matsuura, J.4    Manning, M.C.5    Carpenter, J.F.6
  • 18
    • 33846176574 scopus 로고    scopus 로고
    • Localization of functional polypeptides in bacterial inclusion bodies
    • Garcia-Fruitos E, Aris A, Villaverde A. 2007a. Localization of functional polypeptides in bacterial inclusion bodies. Appl Environ Microbiol 73:289-294.
    • (2007) Appl Environ Microbiol , vol.73 , pp. 289-294
    • Garcia-Fruitos, E.1    Aris, A.2    Villaverde, A.3
  • 20
    • 33748132184 scopus 로고    scopus 로고
    • The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells
    • Gonzalez-Montalban N, Garcia-Fruitos E, Ventura S, Aris A, Villaverde A. 2006. The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells. Microb Cell Fact 5:26.
    • (2006) Microb Cell Fact , vol.5 , pp. 26
    • Gonzalez-Montalban, N.1    Garcia-Fruitos, E.2    Ventura, S.3    Aris, A.4    Villaverde, A.5
  • 23
    • 0035809039 scopus 로고    scopus 로고
    • Kinetic model of in vivo folding and inclusion body formation in recombinant Escherichia coli
    • Hoffmann F, Posten C, Rinas U. 2001. Kinetic model of in vivo folding and inclusion body formation in recombinant Escherichia coli. Biotechnol Bioeng 72:315-322.
    • (2001) Biotechnol Bioeng , vol.72 , pp. 315-322
    • Hoffmann, F.1    Posten, C.2    Rinas, U.3
  • 25
    • 0036290786 scopus 로고    scopus 로고
    • Use of a hydrophobic dye to indirectly probe the structural organization and conformational plasticity of molecules in amorphous aggregates of carbonic anhydrase
    • Kundu B, Guptasarma P. 2002. Use of a hydrophobic dye to indirectly probe the structural organization and conformational plasticity of molecules in amorphous aggregates of carbonic anhydrase. Biochem Biophys Res Commun 293:572-577.
    • (2002) Biochem Biophys Res Commun , vol.293 , pp. 572-577
    • Kundu, B.1    Guptasarma, P.2
  • 26
    • 0026596223 scopus 로고
    • Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding
    • Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl FU. 1992. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356:683-689.
    • (1992) Nature , vol.356 , pp. 683-689
    • Langer, T.1    Lu, C.2    Echols, H.3    Flanagan, J.4    Hayer, M.K.5    Hartl, F.U.6
  • 27
    • 34447538530 scopus 로고    scopus 로고
    • Role of the chaperone DnaK in protein solubility and conformational quality in inclusion body-forming Escherichia coli cells
    • Martinez-Alonso M, Vera A, Villaverde A. 2007. Role of the chaperone DnaK in protein solubility and conformational quality in inclusion body-forming Escherichia coli cells. FEMS Microbiol Lett 273:187-195.
    • (2007) FEMS Microbiol Lett , vol.273 , pp. 187-195
    • Martinez-Alonso, M.1    Vera, A.2    Villaverde, A.3
  • 28
    • 0003785155 scopus 로고
    • Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
    • Miller JH. Experiments in molecular genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 1972.
    • (1972) Experiments in molecular genetics
    • Miller, J.H.1
  • 29
    • 0142125283 scopus 로고    scopus 로고
    • Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation
    • Mogk A, Deuerling E, Vorderwulbecke S, Vierling E, Bukau B. 2003a. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50:585-595.
    • (2003) Mol Microbiol , vol.50 , pp. 585-595
    • Mogk, A.1    Deuerling, E.2    Vorderwulbecke, S.3    Vierling, E.4    Bukau, B.5
  • 30
    • 0042733148 scopus 로고    scopus 로고
    • Mogk A, Schlieker C, Friedrich KL, Schonfeld HI, Vierling E, Bukau B. 2003b. Refolding of substrates bound to small Hsps relies on a dis- aggregation reaction mediated most efficiently by ClpB/DnaK. I Biol Chem 278:31033-31042.
    • Mogk A, Schlieker C, Friedrich KL, Schonfeld HI, Vierling E, Bukau B. 2003b. Refolding of substrates bound to small Hsps relies on a dis- aggregation reaction mediated most efficiently by ClpB/DnaK. I Biol Chem 278:31033-31042.
  • 31
    • 12844274977 scopus 로고    scopus 로고
    • Secondary structure, conformational stability and glycosylation of a recombinant Candida rugosa lipase studied by Fourier-transform infrared spectroscopy
    • Natalello A, Ami D, Brocca S, Lotti M, Doglia SM. 2005. Secondary structure, conformational stability and glycosylation of a recombinant Candida rugosa lipase studied by Fourier-transform infrared spectroscopy. Biochem J 385:511-517.
    • (2005) Biochem J , vol.385 , pp. 511-517
    • Natalello, A.1    Ami, D.2    Brocca, S.3    Lotti, M.4    Doglia, S.M.5
  • 32
    • 0028260192 scopus 로고
    • Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR
    • Oberg K, Chrunyk BA, Wetzel R, Fink AL. 1994. Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR. Biochemistry 33:2628-2634.
    • (1994) Biochemistry , vol.33 , pp. 2628-2634
    • Oberg, K.1    Chrunyk, B.A.2    Wetzel, R.3    Fink, A.L.4
  • 34
    • 23444447864 scopus 로고    scopus 로고
    • Plakoutsi G, Bemporad F, Calamai M, Taddei N, Dobson CM, Chiti F. 2005. Evidence for a mechanism of amyloid formation involving molecular reorganisation within native-like precursor aggregates. I Mol Biol 351: 910-922.
    • Plakoutsi G, Bemporad F, Calamai M, Taddei N, Dobson CM, Chiti F. 2005. Evidence for a mechanism of amyloid formation involving molecular reorganisation within native-like precursor aggregates. I Mol Biol 351: 910-922.
  • 35
    • 0028057034 scopus 로고
    • Secondary structure characterization of beta-lactamase inclusion bodies
    • Przybycien TM, Dunn JP, Valax P, Georgiou G. 1994. Secondary structure characterization of beta-lactamase inclusion bodies. Protein Eng 7:131-136.
    • (1994) Protein Eng , vol.7 , pp. 131-136
    • Przybycien, T.M.1    Dunn, J.P.2    Valax, P.3    Georgiou, G.4
  • 36
    • 33846222898 scopus 로고    scopus 로고
    • Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli
    • Rinas U, Hoffmann F, Betiku E, Estape D, Marten S. 2007. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. J Biotechnol 127:244-257.
    • (2007) J Biotechnol , vol.127 , pp. 244-257
    • Rinas, U.1    Hoffmann, F.2    Betiku, E.3    Estape, D.4    Marten, S.5
  • 38
    • 10044275315 scopus 로고    scopus 로고
    • Solubilization of aggregated proteins by ClpB/DnaK relies on the continuous extraction of unfolded polypeptides
    • Schlieker C, Tews I, Bukau B, Mogk A. 2004. Solubilization of aggregated proteins by ClpB/DnaK relies on the continuous extraction of unfolded polypeptides. FEBS Lett 578:351-356.
    • (2004) FEBS Lett , vol.578 , pp. 351-356
    • Schlieker, C.1    Tews, I.2    Bukau, B.3    Mogk, A.4
  • 39
    • 0022463740 scopus 로고
    • Resolution-enhanced Fourier transform infrared spectroscopy of enzymes
    • Susi H, Byler DM. 1986. Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Methods Enzymol 130:290-311.
    • (1986) Methods Enzymol , vol.130 , pp. 290-311
    • Susi, H.1    Byler, D.M.2
  • 40
    • 0029786163 scopus 로고    scopus 로고
    • Protein folding in the cytoplasm of Escherichia coli: Requirements tor the DnaK-DnaJ-GrpE and GroEL-GroES molecular chaperone machines
    • Thomas JG, Baneyx F. 1996. Protein folding in the cytoplasm of Escherichia coli: Requirements tor the DnaK-DnaJ-GrpE and GroEL-GroES molecular chaperone machines. Mol Microbiol 21:1185-1196.
    • (1996) Mol Microbiol , vol.21 , pp. 1185-1196
    • Thomas, J.G.1    Baneyx, F.2
  • 41
    • 0031705810 scopus 로고    scopus 로고
    • Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: Comparison with ClpA, ClpB, and HtpG In vivo
    • Thomas JG, Baneyx F. 1998. Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: Comparison with ClpA, ClpB, and HtpG In vivo. J Bacteriol 180: 5165-5172.
    • (1998) J Bacteriol , vol.180 , pp. 5165-5172
    • Thomas, J.G.1    Baneyx, F.2
  • 42
    • 0025921901 scopus 로고
    • High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D
    • Tokatlidis K, Dhurjati P, Millet J, Beguin P, Aubert JP. 1991. High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Lett 282:205-208.
    • (1991) FEBS Lett , vol.282 , pp. 205-208
    • Tokatlidis, K.1    Dhurjati, P.2    Millet, J.3    Beguin, P.4    Aubert, J.P.5
  • 43
    • 0042193601 scopus 로고    scopus 로고
    • Protein aggregation in recombinant bacteria: Biological role of inclusion bodies
    • Villaverde A, Carrio MM. 2003. Protein aggregation in recombinant bacteria: Biological role of inclusion bodies. Biotechnol Lett 25:1385-1395.
    • (2003) Biotechnol Lett , vol.25 , pp. 1385-1395
    • Villaverde, A.1    Carrio, M.M.2
  • 44
    • 0024317018 scopus 로고
    • The formation of biologically active beta-galactosidase inclusion bodies in Escherichia coli
    • Worrall DM, Goss NH. 1989. The formation of biologically active beta-galactosidase inclusion bodies in Escherichia coli. Aust J Biotechnol 3:28-32.
    • (1989) Aust J Biotechnol , vol.3 , pp. 28-32
    • Worrall, D.M.1    Goss, N.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.