메뉴 건너뛰기




Volumn 31, Issue 9, 2008, Pages 1550-1563

Multiple linear regression and artificial neural network retention prediction models for ginsenosides on a polyamine-bonded stationary phase in hydrophilic interaction chromatography

Author keywords

Artificial neural network; Ginsenosides; Hydrophilic interaction chromatography; Multiple linear regression; Polyamine bonded phase

Indexed keywords

ALGEBRA; BACKPROPAGATION; CHEMICALS; CHROMATOGRAPHIC ANALYSIS; CHROMATOGRAPHY; EIGENVALUES AND EIGENFUNCTIONS; FLOW INTERACTIONS; FOOD PROCESSING; FORECASTING; IMAGE CLASSIFICATION; LINEAR REGRESSION; LIQUID CHROMATOGRAPHY; MATHEMATICAL MODELS; NEURAL NETWORKS; PHASE BEHAVIOR; REGRESSION ANALYSIS; RHENIUM; THEOREM PROVING; THERMAL LOGGING;

EID: 45949110373     PISSN: 16159306     EISSN: 16159314     Source Type: Journal    
DOI: 10.1002/jssc.200800077     Document Type: Article
Times cited : (26)

References (48)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.