메뉴 건너뛰기




Volumn 10, Issue 7, 1998, Pages 1847-1871

Kernel-Based Equiprobabilistic Topographic Map Formation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001405580     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976698300017179     Document Type: Article
Times cited : (51)

References (39)
  • 1
    • 0031271273 scopus 로고    scopus 로고
    • Blind source separation - Semiparametric statistical approach
    • Amari, S.-I., & Cardoso, J.-F. (1997). Blind source separation - Semiparametric statistical approach. IEEE Trans. on Signal Processing, 45(11), 2692-2700.
    • (1997) IEEE Trans. on Signal Processing , vol.45 , Issue.11 , pp. 2692-2700
    • Amari, S.-I.1    Cardoso, J.-F.2
  • 2
    • 0001449448 scopus 로고    scopus 로고
    • Controlling the magnification factor of self-organizing feature maps
    • Bauer, H.-U., Der, R., & Herrmann, M. (1996). Controlling the magnification factor of self-organizing feature maps. Neural Computation, 8, 757-771.
    • (1996) Neural Computation , vol.8 , pp. 757-771
    • Bauer, H.-U.1    Der, R.2    Herrmann, M.3
  • 3
    • 84898431324 scopus 로고
    • Variable kernel estimates of multivariate densities
    • Breiman, L., Meisel, W., & Purcell, E. (1977). Variable kernel estimates of multivariate densities. Technometrics, 19, 135-144.
    • (1977) Technometrics , vol.19 , pp. 135-144
    • Breiman, L.1    Meisel, W.2    Purcell, E.3
  • 4
    • 0031122399 scopus 로고    scopus 로고
    • Infomax and maximum likelihood for blind signal separation
    • Cardoso, J.-F. (1997). Infomax and maximum likelihood for blind signal separation. IEEE Signal Processing Letters, 4(4), 112-114.
    • (1997) IEEE Signal Processing Letters , vol.4 , Issue.4 , pp. 112-114
    • Cardoso, J.-F.1
  • 5
    • 0028416938 scopus 로고
    • Independent component analysis - A new concept?
    • Comon, P. (1994). Independent component analysis - A new concept? Signal Processing, 36(3), 287-314.
    • (1994) Signal Processing , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 7
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • Field, D. J. (1994). What is the goal of sensory coding? Neural Computation, 6, 559-601.
    • (1994) Neural Computation , vol.6 , pp. 559-601
    • Field, D.J.1
  • 8
    • 0000386644 scopus 로고
    • Growing cell structures - A self-organizing network in k dimensions
    • I. Alexander & J. Taylor (Eds.), Amsterdam: Elsevier
    • Fritzke, B. (1992). Growing cell structures - a self-organizing network in k dimensions. In I. Alexander & J. Taylor (Eds.), Artificial Neural Networks 2 (pp. 1051-1056). Amsterdam: Elsevier.
    • (1992) Artificial Neural Networks , vol.2 , pp. 1051-1056
    • Fritzke, B.1
  • 9
    • 0001948145 scopus 로고
    • Fast learning with incremental RBF networks
    • Fritzke, B. (1994). Fast learning with incremental RBF networks. Neural Processing Letters, 1(1), 2-5.
    • (1994) Neural Processing Letters , vol.1 , Issue.1 , pp. 2-5
    • Fritzke, B.1
  • 10
    • 0000787409 scopus 로고    scopus 로고
    • Phase transitions in stochastic self-organizing maps
    • Graepel, T., Burger, M., & Obermayer, K. (1997). Phase transitions in stochastic self-organizing maps. Physical Review E, 56(4), 3876-3890.
    • (1997) Physical Review E , vol.56 , Issue.4 , pp. 3876-3890
    • Graepel, T.1    Burger, M.2    Obermayer, K.3
  • 11
    • 0017120827 scopus 로고
    • Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors
    • Grossberg, S. (1976). Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biol. Cybern., 23, 121-134.
    • (1976) Biol. Cybern. , vol.23 , pp. 121-134
    • Grossberg, S.1
  • 13
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biol. Cybern., 43, 59-69.
    • (1982) Biol. Cybern. , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 15
    • 0025530493 scopus 로고    scopus 로고
    • Combining linear equalization and self-organizing adaptation in dynamic discrete-signal detection
    • San Diego
    • Kohonen, T., Raivio, K., Simula, O., Ventä, O., & Henriksson, J. (1996). Combining linear equalization and self-organizing adaptation in dynamic discrete-signal detection. In Proc. IJCNN (Vol. I, pp. 223-228). San Diego.
    • (1996) Proc. IJCNN , vol.1 , pp. 223-228
    • Kohonen, T.1    Raivio, K.2    Simula, O.3    Ventä, O.4    Henriksson, J.5
  • 16
    • 0000620924 scopus 로고    scopus 로고
    • Faithful representations of separable distributions
    • Lin, J. K., Grier, D. G., & Cowan, J. D. (1997). Faithful representations of separable distributions. Neural Computation, 9, 1305-1320.
    • (1997) Neural Computation , vol.9 , pp. 1305-1320
    • Lin, J.K.1    Grier, D.G.2    Cowan, J.D.3
  • 18
    • 0017526570 scopus 로고
    • Analysis of recursive stochastic algorithms
    • Ljung, L. (1977). Analysis of recursive stochastic algorithms. IEEE Trans. Automat. Contr., AC-22, 551-575.
    • (1977) IEEE Trans. Automat. Contr. , vol.AC-22 , pp. 551-575
    • Ljung, L.1
  • 19
    • 0026400802 scopus 로고
    • What have neural networks to offer statistical pattern processing?
    • San Diego
    • Lowe, D. (1991). What have neural networks to offer statistical pattern processing? In Proc. SPIE Conference on Adaptive Signal Processing (pp. 460-471). San Diego.
    • (1991) Proc. SPIE Conference on Adaptive Signal Processing , pp. 460-471
    • Lowe, D.1
  • 20
    • 0026185546 scopus 로고
    • Code vector density in topographic mappings: Scalar case
    • Luttrell, S. P. (1991). Code vector density in topographic mappings: Scalar case. IEEE Trans. on Neural Networks, 2, 427-436.
    • (1991) IEEE Trans. on Neural Networks , vol.2 , pp. 427-436
    • Luttrell, S.P.1
  • 21
    • 0000742931 scopus 로고
    • A "neural-gas" network learns topologies
    • T. Kohonen, K. Mäkisara, O. Simula, & J. Kangas (Eds.), Amsterdam: North-Holland
    • Martinetz, T., & Schulten, K. (1991). A "neural-gas" network learns topologies. In T. Kohonen, K. Mäkisara, O. Simula, & J. Kangas (Eds.), Artificial neural networks (pp. 397-402). Amsterdam: North-Holland.
    • (1991) Artificial Neural Networks , pp. 397-402
    • Martinetz, T.1    Schulten, K.2
  • 22
    • 0002773313 scopus 로고
    • Learning with localized receptive fields
    • D. Touretzky, G. Hinton, & T. Sejnowski (Eds.), San Mateo, CA: Morgan Kaufmann
    • Moody, J., & Darken, C. (1988). Learning with localized receptive fields. In D. Touretzky, G. Hinton, & T. Sejnowski (Eds.), Proc. 1988 Connectionist Models Summer School (pp. 133-143). San Mateo, CA: Morgan Kaufmann.
    • (1988) Proc. 1988 Connectionist Models Summer School , pp. 133-143
    • Moody, J.1    Darken, C.2
  • 24
    • 0029410705 scopus 로고
    • Self-organization as an iterative kernel smoothing process
    • Mulier, F., & Cherkassky, V. (1995). Self-organization as an iterative kernel smoothing process. Neural Computation, 7, 1165-1177.
    • (1995) Neural Computation , vol.7 , pp. 1165-1177
    • Mulier, F.1    Cherkassky, V.2
  • 25
    • 0000415231 scopus 로고
    • Maximum likelihood competitive learning
    • D. S. Touretzky (Ed.), San Mateo, CA: Morgan Kaufmann
    • Nowlan, S. J. (1990). Maximum likelihood competitive learning. In D. S. Touretzky (Ed.), Advances in neural information processing systems, II (pp. 574-582). San Mateo, CA: Morgan Kaufmann.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 574-582
    • Nowlan, S.J.1
  • 26
    • 0002754742 scopus 로고    scopus 로고
    • S.-I. Amari, L. Xu, L.-W. Chan, I. King, & K.-S. Leung (Eds.), Nonlinear blind source separation by self-organizing maps. New York: Springer-Verlag
    • Pajunen, P., Hyvärinen, A., & Karhunen, J. (1996). In S.-I. Amari, L. Xu, L.-W. Chan, I. King, & K.-S. Leung (Eds.), Nonlinear blind source separation by self-organizing maps. Progress in neural information processing (Vol. 2, pp. 1207-1210). New York: Springer-Verlag.
    • (1996) Progress in Neural Information Processing , vol.2 , pp. 1207-1210
    • Pajunen, P.1    Hyvärinen, A.2    Karhunen, J.3
  • 27
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • Poggio, T., & Girosi, F. (1990). Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247, 978-982.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 28
    • 0025838954 scopus 로고
    • Asymptotic level density for a class of vector quantization processes
    • Ritter, H. (1991). Asymptotic level density for a class of vector quantization processes. IEEE Transactions on Neural Networks, 2(1), 173-175.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.1 , pp. 173-175
    • Ritter, H.1
  • 30
    • 0002961288 scopus 로고
    • On the stationary state of Kohonen's self-organizing sensory mapping
    • Ritter, H., & Schulten, K. (1986). On the stationary state of Kohonen's self-organizing sensory mapping. Biol. Cybern., 54, 99-106.
    • (1986) Biol. Cybern. , vol.54 , pp. 99-106
    • Ritter, H.1    Schulten, K.2
  • 31
    • 0000389568 scopus 로고
    • Statistical mechanics and phase transitions in clustering
    • Rose, K., Gurewitz, E., & Fox, G.C. (1990). Statistical mechanics and phase transitions in clustering. Physical Review Letters, 65(8), 945-948.
    • (1990) Physical Review Letters , vol.65 , Issue.8 , pp. 945-948
    • Rose, K.1    Gurewitz, E.2    Fox, G.C.3
  • 33
    • 0029217605 scopus 로고
    • Globally-ordered topology-preserving maps achieved with a learning rule performing local weight updates only
    • Cambridge, MA
    • Van Hulle, M .M. (1995). Globally-ordered topology-preserving maps achieved with a learning rule performing local weight updates only. Proc. IEEE NNSP95 (pp. 95-104). Cambridge, MA.
    • (1995) Proc. IEEE NNSP95 , pp. 95-104
    • Van Hulle, M.M.1
  • 34
    • 0005671334 scopus 로고    scopus 로고
    • The formation of topographic maps that maximize the average mutual information of the output responses to noiseless input signals
    • Van Hulle, M. M. (1997a). The formation of topographic maps that maximize the average mutual information of the output responses to noiseless input signals. Neural Computation, 9(3), 595-606.
    • (1997) Neural Computation , vol.9 , Issue.3 , pp. 595-606
    • Van Hulle, M.M.1
  • 35
    • 0031128354 scopus 로고    scopus 로고
    • Topology-preserving map formation achieved with a purely local unsupervised competitive learning rule
    • Van Hulle, M. M. (1997b). Topology-preserving map formation achieved with a purely local unsupervised competitive learning rule. Neural Networks, 10, 431-446.
    • (1997) Neural Networks , vol.10 , pp. 431-446
    • Van Hulle, M.M.1
  • 36
    • 0345605721 scopus 로고    scopus 로고
    • Nonparametric density estimation and regression achieved with topographic maps maximizing the information-theoretic entropy of their outputs
    • Van Hulle, M. M. (1997c). Nonparametric density estimation and regression achieved with topographic maps maximizing the information-theoretic entropy of their outputs. Biol. Cybern., 77, 49-61.
    • (1997) Biol. Cybern. , vol.77 , pp. 49-61
    • Van Hulle, M.M.1
  • 37
    • 0011251854 scopus 로고
    • On an unsupervised learning rule for scalar quantization following the maximum entropy principle
    • Van Hulle, M. M., & Martinez, D. (1993). On an unsupervised learning rule for scalar quantization following the maximum entropy principle. Neural Computation, 5, 939-953.
    • (1993) Neural Computation , vol.5 , pp. 939-953
    • Van Hulle, M.M.1    Martinez, D.2
  • 38
    • 0005059503 scopus 로고
    • Unsupervised learning by EM algorithm based on finite mixture of gaussians
    • Portland, OR
    • Xu, L., & Jordan, M. I. (1993). Unsupervised learning by EM algorithm based on finite mixture of gaussians. World Congress on Neural Networks (Vol. 2, pp. 431-434). Portland, OR.
    • (1993) World Congress on Neural Networks , vol.2 , pp. 431-434
    • Xu, L.1    Jordan, M.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.