-
1
-
-
0031271273
-
Blind source separation - Semiparametric statistical approach
-
Amari, S.-I., & Cardoso, J.-F. (1997). Blind source separation - Semiparametric statistical approach. IEEE Trans. on Signal Processing, 45(11), 2692-2700.
-
(1997)
IEEE Trans. on Signal Processing
, vol.45
, Issue.11
, pp. 2692-2700
-
-
Amari, S.-I.1
Cardoso, J.-F.2
-
2
-
-
0001449448
-
Controlling the magnification factor of self-organizing feature maps
-
Bauer, H.-U., Der, R., & Herrmann, M. (1996). Controlling the magnification factor of self-organizing feature maps. Neural Computation, 8, 757-771.
-
(1996)
Neural Computation
, vol.8
, pp. 757-771
-
-
Bauer, H.-U.1
Der, R.2
Herrmann, M.3
-
3
-
-
84898431324
-
Variable kernel estimates of multivariate densities
-
Breiman, L., Meisel, W., & Purcell, E. (1977). Variable kernel estimates of multivariate densities. Technometrics, 19, 135-144.
-
(1977)
Technometrics
, vol.19
, pp. 135-144
-
-
Breiman, L.1
Meisel, W.2
Purcell, E.3
-
4
-
-
0031122399
-
Infomax and maximum likelihood for blind signal separation
-
Cardoso, J.-F. (1997). Infomax and maximum likelihood for blind signal separation. IEEE Signal Processing Letters, 4(4), 112-114.
-
(1997)
IEEE Signal Processing Letters
, vol.4
, Issue.4
, pp. 112-114
-
-
Cardoso, J.-F.1
-
5
-
-
0028416938
-
Independent component analysis - A new concept?
-
Comon, P. (1994). Independent component analysis - A new concept? Signal Processing, 36(3), 287-314.
-
(1994)
Signal Processing
, vol.36
, Issue.3
, pp. 287-314
-
-
Comon, P.1
-
7
-
-
0000929221
-
What is the goal of sensory coding?
-
Field, D. J. (1994). What is the goal of sensory coding? Neural Computation, 6, 559-601.
-
(1994)
Neural Computation
, vol.6
, pp. 559-601
-
-
Field, D.J.1
-
8
-
-
0000386644
-
Growing cell structures - A self-organizing network in k dimensions
-
I. Alexander & J. Taylor (Eds.), Amsterdam: Elsevier
-
Fritzke, B. (1992). Growing cell structures - a self-organizing network in k dimensions. In I. Alexander & J. Taylor (Eds.), Artificial Neural Networks 2 (pp. 1051-1056). Amsterdam: Elsevier.
-
(1992)
Artificial Neural Networks
, vol.2
, pp. 1051-1056
-
-
Fritzke, B.1
-
9
-
-
0001948145
-
Fast learning with incremental RBF networks
-
Fritzke, B. (1994). Fast learning with incremental RBF networks. Neural Processing Letters, 1(1), 2-5.
-
(1994)
Neural Processing Letters
, vol.1
, Issue.1
, pp. 2-5
-
-
Fritzke, B.1
-
10
-
-
0000787409
-
Phase transitions in stochastic self-organizing maps
-
Graepel, T., Burger, M., & Obermayer, K. (1997). Phase transitions in stochastic self-organizing maps. Physical Review E, 56(4), 3876-3890.
-
(1997)
Physical Review E
, vol.56
, Issue.4
, pp. 3876-3890
-
-
Graepel, T.1
Burger, M.2
Obermayer, K.3
-
11
-
-
0017120827
-
Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors
-
Grossberg, S. (1976). Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors. Biol. Cybern., 23, 121-134.
-
(1976)
Biol. Cybern.
, vol.23
, pp. 121-134
-
-
Grossberg, S.1
-
12
-
-
0028428443
-
Regression modeling in back-propagation and projection pursuit learning
-
Hwang, J.-N., Lay, S.-R., Maechle, M., Martin, R. D., & Schimert, J. (1994). Regression modeling in back-propagation and projection pursuit learning. IEEE Trans. on Neural Networks, 5(3), 342-353.
-
(1994)
IEEE Trans. on Neural Networks
, vol.5
, Issue.3
, pp. 342-353
-
-
Hwang, J.-N.1
Lay, S.-R.2
Maechle, M.3
Martin, R.D.4
Schimert, J.5
-
13
-
-
0020068152
-
Self-organized formation of topologically correct feature maps
-
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biol. Cybern., 43, 59-69.
-
(1982)
Biol. Cybern.
, vol.43
, pp. 59-69
-
-
Kohonen, T.1
-
15
-
-
0025530493
-
Combining linear equalization and self-organizing adaptation in dynamic discrete-signal detection
-
San Diego
-
Kohonen, T., Raivio, K., Simula, O., Ventä, O., & Henriksson, J. (1996). Combining linear equalization and self-organizing adaptation in dynamic discrete-signal detection. In Proc. IJCNN (Vol. I, pp. 223-228). San Diego.
-
(1996)
Proc. IJCNN
, vol.1
, pp. 223-228
-
-
Kohonen, T.1
Raivio, K.2
Simula, O.3
Ventä, O.4
Henriksson, J.5
-
16
-
-
0000620924
-
Faithful representations of separable distributions
-
Lin, J. K., Grier, D. G., & Cowan, J. D. (1997). Faithful representations of separable distributions. Neural Computation, 9, 1305-1320.
-
(1997)
Neural Computation
, vol.9
, pp. 1305-1320
-
-
Lin, J.K.1
Grier, D.G.2
Cowan, J.D.3
-
17
-
-
0018918171
-
An algorithm for vector quantizer design
-
Linde, Y., Buzo, A., & Gray, R. M. (1980). An algorithm for vector quantizer design. IEEE Trans. on Communications, COM-28, 84-95.
-
(1980)
IEEE Trans. on Communications
, vol.COM-28
, pp. 84-95
-
-
Linde, Y.1
Buzo, A.2
Gray, R.M.3
-
18
-
-
0017526570
-
Analysis of recursive stochastic algorithms
-
Ljung, L. (1977). Analysis of recursive stochastic algorithms. IEEE Trans. Automat. Contr., AC-22, 551-575.
-
(1977)
IEEE Trans. Automat. Contr.
, vol.AC-22
, pp. 551-575
-
-
Ljung, L.1
-
19
-
-
0026400802
-
What have neural networks to offer statistical pattern processing?
-
San Diego
-
Lowe, D. (1991). What have neural networks to offer statistical pattern processing? In Proc. SPIE Conference on Adaptive Signal Processing (pp. 460-471). San Diego.
-
(1991)
Proc. SPIE Conference on Adaptive Signal Processing
, pp. 460-471
-
-
Lowe, D.1
-
20
-
-
0026185546
-
Code vector density in topographic mappings: Scalar case
-
Luttrell, S. P. (1991). Code vector density in topographic mappings: Scalar case. IEEE Trans. on Neural Networks, 2, 427-436.
-
(1991)
IEEE Trans. on Neural Networks
, vol.2
, pp. 427-436
-
-
Luttrell, S.P.1
-
21
-
-
0000742931
-
A "neural-gas" network learns topologies
-
T. Kohonen, K. Mäkisara, O. Simula, & J. Kangas (Eds.), Amsterdam: North-Holland
-
Martinetz, T., & Schulten, K. (1991). A "neural-gas" network learns topologies. In T. Kohonen, K. Mäkisara, O. Simula, & J. Kangas (Eds.), Artificial neural networks (pp. 397-402). Amsterdam: North-Holland.
-
(1991)
Artificial Neural Networks
, pp. 397-402
-
-
Martinetz, T.1
Schulten, K.2
-
22
-
-
0002773313
-
Learning with localized receptive fields
-
D. Touretzky, G. Hinton, & T. Sejnowski (Eds.), San Mateo, CA: Morgan Kaufmann
-
Moody, J., & Darken, C. (1988). Learning with localized receptive fields. In D. Touretzky, G. Hinton, & T. Sejnowski (Eds.), Proc. 1988 Connectionist Models Summer School (pp. 133-143). San Mateo, CA: Morgan Kaufmann.
-
(1988)
Proc. 1988 Connectionist Models Summer School
, pp. 133-143
-
-
Moody, J.1
Darken, C.2
-
24
-
-
0029410705
-
Self-organization as an iterative kernel smoothing process
-
Mulier, F., & Cherkassky, V. (1995). Self-organization as an iterative kernel smoothing process. Neural Computation, 7, 1165-1177.
-
(1995)
Neural Computation
, vol.7
, pp. 1165-1177
-
-
Mulier, F.1
Cherkassky, V.2
-
25
-
-
0000415231
-
Maximum likelihood competitive learning
-
D. S. Touretzky (Ed.), San Mateo, CA: Morgan Kaufmann
-
Nowlan, S. J. (1990). Maximum likelihood competitive learning. In D. S. Touretzky (Ed.), Advances in neural information processing systems, II (pp. 574-582). San Mateo, CA: Morgan Kaufmann.
-
(1990)
Advances in Neural Information Processing Systems
, vol.2
, pp. 574-582
-
-
Nowlan, S.J.1
-
26
-
-
0002754742
-
-
S.-I. Amari, L. Xu, L.-W. Chan, I. King, & K.-S. Leung (Eds.), Nonlinear blind source separation by self-organizing maps. New York: Springer-Verlag
-
Pajunen, P., Hyvärinen, A., & Karhunen, J. (1996). In S.-I. Amari, L. Xu, L.-W. Chan, I. King, & K.-S. Leung (Eds.), Nonlinear blind source separation by self-organizing maps. Progress in neural information processing (Vol. 2, pp. 1207-1210). New York: Springer-Verlag.
-
(1996)
Progress in Neural Information Processing
, vol.2
, pp. 1207-1210
-
-
Pajunen, P.1
Hyvärinen, A.2
Karhunen, J.3
-
27
-
-
0025056697
-
Regularization algorithms for learning that are equivalent to multilayer networks
-
Poggio, T., & Girosi, F. (1990). Regularization algorithms for learning that are equivalent to multilayer networks. Science, 247, 978-982.
-
(1990)
Science
, vol.247
, pp. 978-982
-
-
Poggio, T.1
Girosi, F.2
-
28
-
-
0025838954
-
Asymptotic level density for a class of vector quantization processes
-
Ritter, H. (1991). Asymptotic level density for a class of vector quantization processes. IEEE Transactions on Neural Networks, 2(1), 173-175.
-
(1991)
IEEE Transactions on Neural Networks
, vol.2
, Issue.1
, pp. 173-175
-
-
Ritter, H.1
-
29
-
-
0003647182
-
-
Reading, MA: Addison-Wesley
-
Ritter, H., Martinetz, T., & Schulten, K. (1992). Neural computation and self-organizing maps: An introduction. Reading, MA: Addison-Wesley.
-
(1992)
Neural Computation and Self-organizing Maps: An Introduction
-
-
Ritter, H.1
Martinetz, T.2
Schulten, K.3
-
30
-
-
0002961288
-
On the stationary state of Kohonen's self-organizing sensory mapping
-
Ritter, H., & Schulten, K. (1986). On the stationary state of Kohonen's self-organizing sensory mapping. Biol. Cybern., 54, 99-106.
-
(1986)
Biol. Cybern.
, vol.54
, pp. 99-106
-
-
Ritter, H.1
Schulten, K.2
-
31
-
-
0000389568
-
Statistical mechanics and phase transitions in clustering
-
Rose, K., Gurewitz, E., & Fox, G.C. (1990). Statistical mechanics and phase transitions in clustering. Physical Review Letters, 65(8), 945-948.
-
(1990)
Physical Review Letters
, vol.65
, Issue.8
, pp. 945-948
-
-
Rose, K.1
Gurewitz, E.2
Fox, G.C.3
-
33
-
-
0029217605
-
Globally-ordered topology-preserving maps achieved with a learning rule performing local weight updates only
-
Cambridge, MA
-
Van Hulle, M .M. (1995). Globally-ordered topology-preserving maps achieved with a learning rule performing local weight updates only. Proc. IEEE NNSP95 (pp. 95-104). Cambridge, MA.
-
(1995)
Proc. IEEE NNSP95
, pp. 95-104
-
-
Van Hulle, M.M.1
-
34
-
-
0005671334
-
The formation of topographic maps that maximize the average mutual information of the output responses to noiseless input signals
-
Van Hulle, M. M. (1997a). The formation of topographic maps that maximize the average mutual information of the output responses to noiseless input signals. Neural Computation, 9(3), 595-606.
-
(1997)
Neural Computation
, vol.9
, Issue.3
, pp. 595-606
-
-
Van Hulle, M.M.1
-
35
-
-
0031128354
-
Topology-preserving map formation achieved with a purely local unsupervised competitive learning rule
-
Van Hulle, M. M. (1997b). Topology-preserving map formation achieved with a purely local unsupervised competitive learning rule. Neural Networks, 10, 431-446.
-
(1997)
Neural Networks
, vol.10
, pp. 431-446
-
-
Van Hulle, M.M.1
-
36
-
-
0345605721
-
Nonparametric density estimation and regression achieved with topographic maps maximizing the information-theoretic entropy of their outputs
-
Van Hulle, M. M. (1997c). Nonparametric density estimation and regression achieved with topographic maps maximizing the information-theoretic entropy of their outputs. Biol. Cybern., 77, 49-61.
-
(1997)
Biol. Cybern.
, vol.77
, pp. 49-61
-
-
Van Hulle, M.M.1
-
37
-
-
0011251854
-
On an unsupervised learning rule for scalar quantization following the maximum entropy principle
-
Van Hulle, M. M., & Martinez, D. (1993). On an unsupervised learning rule for scalar quantization following the maximum entropy principle. Neural Computation, 5, 939-953.
-
(1993)
Neural Computation
, vol.5
, pp. 939-953
-
-
Van Hulle, M.M.1
Martinez, D.2
-
38
-
-
0005059503
-
Unsupervised learning by EM algorithm based on finite mixture of gaussians
-
Portland, OR
-
Xu, L., & Jordan, M. I. (1993). Unsupervised learning by EM algorithm based on finite mixture of gaussians. World Congress on Neural Networks (Vol. 2, pp. 431-434). Portland, OR.
-
(1993)
World Congress on Neural Networks
, vol.2
, pp. 431-434
-
-
Xu, L.1
Jordan, M.I.2
|