메뉴 건너뛰기




Volumn 55, Issue 1, 2008, Pages 150-164

Classification model for product form design using fuzzy support vector machines

Author keywords

Consumer preferences; Fuzzy support vector machines; Mobile phone design

Indexed keywords

ARCHITECTURAL DESIGN; CLASSIFICATION (OF INFORMATION); DESIGN; FUZZY LOGIC; IMAGE RETRIEVAL; KETONES; LABELING; LABELS; LEARNING SYSTEMS; MACHINE DESIGN; SUPPORT VECTOR MACHINES; TELECOMMUNICATION EQUIPMENT; VECTORS;

EID: 44649198345     PISSN: 03608352     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cie.2007.12.007     Document Type: Article
Times cited : (49)

References (24)
  • 1
    • 0032856761 scopus 로고    scopus 로고
    • On domain knowledge and feature selection using a support vector machine
    • Barzilay O., and Brailovsky V.L. On domain knowledge and feature selection using a support vector machine. Pattern Recognition Letters 20 (1999) 475-484
    • (1999) Pattern Recognition Letters , vol.20 , pp. 475-484
    • Barzilay, O.1    Brailovsky, V.L.2
  • 2
    • 33646856024 scopus 로고    scopus 로고
    • Avoiding model selection bias in small-sample genomic datasets
    • Berrar D., Bradbury I., and Dubitzky W. Avoiding model selection bias in small-sample genomic datasets. Bioinformatics 22 10 (2006) 1245-1250
    • (2006) Bioinformatics , vol.22 , Issue.10 , pp. 1245-1250
    • Berrar, D.1    Bradbury, I.2    Dubitzky, W.3
  • 4
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2 2 (1998) 955-974
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 955-974
    • Burges, C.1
  • 5
    • 26444573178 scopus 로고    scopus 로고
    • Which is the best multiclass SVM method? An empirical study
    • Duan K.B., and Keerthi S.S. Which is the best multiclass SVM method? An empirical study. Multiple Classifier Systems (2005) 278-285
    • (2005) Multiple Classifier Systems , pp. 278-285
    • Duan, K.B.1    Keerthi, S.S.2
  • 7
    • 44649134995 scopus 로고    scopus 로고
    • Hsu, C.W., Chang, C.C., Lin, C.J. (2003). Technical Report, A practical guide to support vector classification, Department of Computer Science & Information Engineering, National Taiwan University, Taiwan.
    • Hsu, C.W., Chang, C.C., Lin, C.J. (2003). Technical Report, A practical guide to support vector classification, Department of Computer Science & Information Engineering, National Taiwan University, Taiwan.
  • 8
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu C.W., and Lin C.J. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks 13 (2001) 415-425
    • (2001) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 10
    • 22344440204 scopus 로고    scopus 로고
    • Fuzzy support vector machines for pattern recognition and data mining
    • Huang H.P., and Liu Y.H. Fuzzy support vector machines for pattern recognition and data mining. International Journal of Fuzzy Systems 4 3 (2002) 826-835
    • (2002) International Journal of Fuzzy Systems , vol.4 , Issue.3 , pp. 826-835
    • Huang, H.P.1    Liu, Y.H.2
  • 13
    • 0002229304 scopus 로고    scopus 로고
    • Pairwise classification and support vector machines
    • Scholkopf B., Burges J.C., and Smola A.J. (Eds), MIT Press, Cambridge
    • Krebel U. Pairwise classification and support vector machines. In: Scholkopf B., Burges J.C., and Smola A.J. (Eds). Advances in kernel methods - support vector learning (1999), MIT Press, Cambridge 255-268
    • (1999) Advances in kernel methods - support vector learning , pp. 255-268
    • Krebel, U.1
  • 14
    • 0036024017 scopus 로고    scopus 로고
    • A methodology for evaluating the usability of audiovisual consumer electronic products
    • Kwahk J., and Han S.H. A methodology for evaluating the usability of audiovisual consumer electronic products. Applied Ergonomics 33 (2002) 419-431
    • (2002) Applied Ergonomics , vol.33 , pp. 419-431
    • Kwahk, J.1    Han, S.H.2
  • 16
    • 4644290661 scopus 로고    scopus 로고
    • Training algorithms for fuzzy support vector machines with noisy data
    • Lin C.F., and Wang S.D. Training algorithms for fuzzy support vector machines with noisy data. Pattern Recognition Letters 25 (2004) 1647-1656
    • (2004) Pattern Recognition Letters , vol.25 , pp. 1647-1656
    • Lin, C.F.1    Wang, S.D.2
  • 17
    • 2342641982 scopus 로고    scopus 로고
    • A fuzzy rule-based approach to modeling affective user satisfaction towards office chair design
    • Park J., and Han S.H. A fuzzy rule-based approach to modeling affective user satisfaction towards office chair design. International Journal of Industrial Ergonomics 34 (2004) 31-47
    • (2004) International Journal of Industrial Ergonomics , vol.34 , pp. 31-47
    • Park, J.1    Han, S.H.2
  • 20
    • 44949258241 scopus 로고    scopus 로고
    • Multiclass SVM-RFE for product form feature selection
    • 10.1016/j.eswa.2007.07.043
    • Shieh M.D., and Yang C.C. Multiclass SVM-RFE for product form feature selection. Expert Systems with Applications (2007) 10.1016/j.eswa.2007.07.043
    • (2007) Expert Systems with Applications
    • Shieh, M.D.1    Yang, C.C.2
  • 22
    • 85178297986 scopus 로고    scopus 로고
    • Smits, G.F. & Jordaan, E.M. (2002). Improved SVM regression using mixtures of kernels. In: Proceedings of IJCNN'02 on Neural Networks.
    • Smits, G.F. & Jordaan, E.M. (2002). Improved SVM regression using mixtures of kernels. In: Proceedings of IJCNN'02 on Neural Networks.
  • 24
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • Wang W., Xu Z., Lu W., and Zhang X. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing 55 (2003) 643-663
    • (2003) Neurocomputing , vol.55 , pp. 643-663
    • Wang, W.1    Xu, Z.2    Lu, W.3    Zhang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.