메뉴 건너뛰기




Volumn 71, Issue 10-12, 2008, Pages 2224-2244

Leap-frog-type learning algorithms over the Lie group of unitary matrices

Author keywords

Leap frog type learning steps; Lie group of unitary matrices; Manifold projection; Matrix decompositions (QR, SVD, EVD)

Indexed keywords

EIGENVALUES AND EIGENFUNCTIONS; INTERPOLATION; NEURAL NETWORKS; SINGULAR VALUE DECOMPOSITION;

EID: 44649088387     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.09.018     Document Type: Article
Times cited : (16)

References (41)
  • 1
    • 0035148248 scopus 로고    scopus 로고
    • Multiplicative nonholonomic/Newton-like algorithm
    • Akuzawa T., and Murata N. Multiplicative nonholonomic/Newton-like algorithm. Chaos Solitons Fractals 12 4 (2001) 785-793
    • (2001) Chaos Solitons Fractals , vol.12 , Issue.4 , pp. 785-793
    • Akuzawa, T.1    Murata, N.2
  • 2
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Amari S.-i. Natural gradient works efficiently in learning. Neural Comput. 10 (1998) 251-276
    • (1998) Neural Comput. , vol.10 , pp. 251-276
    • Amari, S.-i.1
  • 3
    • 0242578049 scopus 로고    scopus 로고
    • Complex independent component analysis of frequency-domain EEG data
    • Anemuller J., Sejnowski T.J., and Makeig S. Complex independent component analysis of frequency-domain EEG data. Neural Networks 16 (2003) 1311-1323
    • (2003) Neural Networks , vol.16 , pp. 1311-1323
    • Anemuller, J.1    Sejnowski, T.J.2    Makeig, S.3
  • 4
    • 0034136037 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis of complex valued signals
    • Bingham E., and Hyvärinen A. A fast fixed-point algorithm for independent component analysis of complex valued signals. Int. J. Neural Syst. 10 1 (2000) 1-8
    • (2000) Int. J. Neural Syst. , vol.10 , Issue.1 , pp. 1-8
    • Bingham, E.1    Hyvärinen, A.2
  • 6
    • 0030417779 scopus 로고    scopus 로고
    • Equivariant adaptive source separation
    • Cardoso J.F., and Laheld B. Equivariant adaptive source separation. IEEE Trans. Signal Process. 44 12 (1996) 3017-3030
    • (1996) IEEE Trans. Signal Process. , vol.44 , Issue.12 , pp. 3017-3030
    • Cardoso, J.F.1    Laheld, B.2
  • 7
    • 5044233142 scopus 로고    scopus 로고
    • Neural learning by geometric integration of reduced 'rigid-body' equations
    • Celledoni E., and Fiori S. Neural learning by geometric integration of reduced 'rigid-body' equations. J. Comput. Appl. Math. 172 2 (2004) 247-269
    • (2004) J. Comput. Appl. Math. , vol.172 , Issue.2 , pp. 247-269
    • Celledoni, E.1    Fiori, S.2
  • 9
    • 0028498103 scopus 로고
    • Robust learning for blind separation of signals
    • Cichocki A., Umbehauen R., and Rummert E. Robust learning for blind separation of signals. Electron. Lett. 30 17 (1994) 1386-1387
    • (1994) Electron. Lett. , vol.30 , Issue.17 , pp. 1386-1387
    • Cichocki, A.1    Umbehauen, R.2    Rummert, E.3
  • 10
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon P. Independent component analysis, a new concept?. Signal Process. 36 (1994) 287-314
    • (1994) Signal Process. , vol.36 , pp. 287-314
    • Comon, P.1
  • 12
    • 0001586142 scopus 로고    scopus 로고
    • A theory for learning by weight flow on Stiefel-Grassman manifold
    • Fiori S. A theory for learning by weight flow on Stiefel-Grassman manifold. Neural Comput. 13 7 (2001) 1625-1647
    • (2001) Neural Comput. , vol.13 , Issue.7 , pp. 1625-1647
    • Fiori, S.1
  • 13
    • 0036565608 scopus 로고    scopus 로고
    • A theory for learning based on rigid bodies dynamics
    • Fiori S. A theory for learning based on rigid bodies dynamics. IEEE Trans. Neural Networks 13 3 (2002) 521-531
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.3 , pp. 521-531
    • Fiori, S.1
  • 14
    • 0037399395 scopus 로고    scopus 로고
    • Extended Hebbian learning for blind separation of complex-valued sources
    • Fiori S. Extended Hebbian learning for blind separation of complex-valued sources. IEEE Trans. Circuits Syst.-Part II 50 4 (2003) 195-202
    • (2003) IEEE Trans. Circuits Syst.-Part II , vol.50 , Issue.4 , pp. 195-202
    • Fiori, S.1
  • 15
    • 0042263287 scopus 로고    scopus 로고
    • Neural independent component analysis by 'maximum-mismatch' learning principle
    • Fiori S. Neural independent component analysis by 'maximum-mismatch' learning principle. Neural Networks 16 8 (2003) 1201-1221
    • (2003) Neural Networks , vol.16 , Issue.8 , pp. 1201-1221
    • Fiori, S.1
  • 16
    • 0345134640 scopus 로고    scopus 로고
    • Fully-multiplicative orthogonal-group ICA neural algorithm
    • Fiori S. Fully-multiplicative orthogonal-group ICA neural algorithm. Electron. Lett. 39 24 (2003) 1737-1738
    • (2003) Electron. Lett. , vol.39 , Issue.24 , pp. 1737-1738
    • Fiori, S.1
  • 17
    • 2442478521 scopus 로고    scopus 로고
    • A fast fixed-point neural blind deconvolution algorithm
    • Fiori S. A fast fixed-point neural blind deconvolution algorithm. IEEE Trans. Neural Networks 15 2 (2004) 455-459
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.2 , pp. 455-459
    • Fiori, S.1
  • 18
    • 17044396848 scopus 로고    scopus 로고
    • Non-linear complex-valued extensions of Hebbian learning: an essay
    • Fiori S. Non-linear complex-valued extensions of Hebbian learning: an essay. Neural Comput. 17 4 (2005) 779-838
    • (2005) Neural Comput. , vol.17 , Issue.4 , pp. 779-838
    • Fiori, S.1
  • 19
    • 21844443579 scopus 로고    scopus 로고
    • Quasi-geodesic neural learning algorithms over the orthogonal group: a tutorial
    • Fiori S. Quasi-geodesic neural learning algorithms over the orthogonal group: a tutorial. J. Mach. Learn. Res. 6 (2005) 743-781
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 743-781
    • Fiori, S.1
  • 20
    • 0037843295 scopus 로고    scopus 로고
    • Numerical modeling for the localization and the assessment of electromagnetic field sources
    • Fiori S., Albini L., Faba A., Cardelli E., and Burrascano P. Numerical modeling for the localization and the assessment of electromagnetic field sources. IEEE Trans. Magn. 39 3 (2003) 1638-1641
    • (2003) IEEE Trans. Magn. , vol.39 , Issue.3 , pp. 1638-1641
    • Fiori, S.1    Albini, L.2    Faba, A.3    Cardelli, E.4    Burrascano, P.5
  • 21
    • 21744449050 scopus 로고    scopus 로고
    • Editorial: special issue on "Geometrical methods in neural networks and learning"
    • Fiori S., and Amari S.-i. Editorial: special issue on "Geometrical methods in neural networks and learning". Neurocomputing 67C (2005) 1-7
    • (2005) Neurocomputing , vol.67 C , pp. 1-7
    • Fiori, S.1    Amari, S.-i.2
  • 22
    • 44649186757 scopus 로고    scopus 로고
    • S. Fiori, T. Tanaka, Committee of Lie-group machines, Technical Report of the Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, September 2007.
    • S. Fiori, T. Tanaka, Committee of Lie-group machines, Technical Report of the Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, September 2007.
  • 25
    • 0001692403 scopus 로고
    • Computing the polar decomposition-with applications
    • Higham N.J. Computing the polar decomposition-with applications. SIAM J. Sci. Stat. Comput. 7 4 (1986) 1160-1174
    • (1986) SIAM J. Sci. Stat. Comput. , vol.7 , Issue.4 , pp. 1160-1174
    • Higham, N.J.1
  • 26
    • 0041637286 scopus 로고    scopus 로고
    • Leap-frog is a robust algorithm for training neural networks
    • Holm J.E.W., and Botha E.C. Leap-frog is a robust algorithm for training neural networks. Network: Comput. Neural Syst. 10 1 (1999) 1-13
    • (1999) Network: Comput. Neural Syst. , vol.10 , Issue.1 , pp. 1-13
    • Holm, J.E.W.1    Botha, E.C.2
  • 28
    • 0026191274 scopus 로고
    • Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture
    • Jutten C., and Hérault J. Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Process. 24 (1991) 1-10
    • (1991) Signal Process. , vol.24 , pp. 1-10
    • Jutten, C.1    Hérault, J.2
  • 29
    • 22944439754 scopus 로고    scopus 로고
    • Functions preserving matrix groups and iterations for the matrix square root
    • Mackey N., Higham N.J., Mackey D.S., and Tisseur F. Functions preserving matrix groups and iterations for the matrix square root. SIAM J. Matrix Anal. Appl. 26 3 (2005) 849-877
    • (2005) SIAM J. Matrix Anal. Appl. , vol.26 , Issue.3 , pp. 849-877
    • Mackey, N.1    Higham, N.J.2    Mackey, D.S.3    Tisseur, F.4
  • 30
    • 0002613860 scopus 로고    scopus 로고
    • Six lectures on geometric integration
    • DeVore R., Iserles A., and Süli E. (Eds), Cambridge University Press, Cambridge
    • McLachlan R., and Quispel R. Six lectures on geometric integration. In: DeVore R., Iserles A., and Süli E. (Eds). Foundations of Computational Mathematics (2001), Cambridge University Press, Cambridge 155-210
    • (2001) Foundations of Computational Mathematics , pp. 155-210
    • McLachlan, R.1    Quispel, R.2
  • 31
    • 0031240502 scopus 로고    scopus 로고
    • Least-squares methods for blind source separation based on nonlinear PCA
    • Pajunen P., and Karhunen J. Least-squares methods for blind source separation based on nonlinear PCA. Int. J. Neural Syst. 8 5-6 (1997) 601-612
    • (1997) Int. J. Neural Syst. , vol.8 , Issue.5-6 , pp. 601-612
    • Pajunen, P.1    Karhunen, J.2
  • 32
    • 33845622488 scopus 로고    scopus 로고
    • An information geometrical approach on plateau problems in multilayer perceptron learning
    • Park H., Amari S.-i., and Lee Y. An information geometrical approach on plateau problems in multilayer perceptron learning. J. KISS (B): Software Appl. 26 4 (1999) 546-556
    • (1999) J. KISS (B): Software Appl. , vol.26 , Issue.4 , pp. 546-556
    • Park, H.1    Amari, S.-i.2    Lee, Y.3
  • 33
    • 0347029918 scopus 로고    scopus 로고
    • Improving generalization performance of natural gradient learning using optimized regularization by NIC
    • Park H., Murata N., and Amari S.-i. Improving generalization performance of natural gradient learning using optimized regularization by NIC. Neural Comput. 16 2 (2004) 355-382
    • (2004) Neural Comput. , vol.16 , Issue.2 , pp. 355-382
    • Park, H.1    Murata, N.2    Amari, S.-i.3
  • 34
    • 77956776669 scopus 로고    scopus 로고
    • Incorporating curvature information into on-line learning
    • Saad D. (Ed), Cambridge University Press, Cambridge
    • Rattray M., and Saad D. Incorporating curvature information into on-line learning. In: Saad D. (Ed). On-line Learning in Neural Networks (1998), Cambridge University Press, Cambridge
    • (1998) On-line Learning in Neural Networks
    • Rattray, M.1    Saad, D.2
  • 35
    • 0032613639 scopus 로고    scopus 로고
    • Analysis of natural gradient descent for multilayer neural networks
    • Rattray M., and Saad D. Analysis of natural gradient descent for multilayer neural networks. Phys. Rev. E 59 4 (1999) 4523-4532
    • (1999) Phys. Rev. E , vol.59 , Issue.4 , pp. 4523-4532
    • Rattray, M.1    Saad, D.2
  • 36
    • 0000198852 scopus 로고    scopus 로고
    • Natural gradient descent for on-line learning
    • Rattray M., Saad D., and Amari S.-i. Natural gradient descent for on-line learning. Phys. Rev. Lett. 81 (1998) 5461-5464
    • (1998) Phys. Rev. Lett. , vol.81 , pp. 5461-5464
    • Rattray, M.1    Saad, D.2    Amari, S.-i.3
  • 37
    • 0027556079 scopus 로고
    • Super-exponential methods for blind deconvolution
    • Shalvi O., and Weinstein E. Super-exponential methods for blind deconvolution. IEEE Trans. Inf. Theory 39 2 (1993) 504-519
    • (1993) IEEE Trans. Inf. Theory , vol.39 , Issue.2 , pp. 504-519
    • Shalvi, O.1    Weinstein, E.2
  • 39
    • 0028812760 scopus 로고
    • Statistical basis of non-linear Hebbian learning and application to clustering
    • Sudjianto A., and Hassoun M.H. Statistical basis of non-linear Hebbian learning and application to clustering. Neural Networks 8 5 (1995) 707-715
    • (1995) Neural Networks , vol.8 , Issue.5 , pp. 707-715
    • Sudjianto, A.1    Hassoun, M.H.2
  • 40
    • 1842477730 scopus 로고    scopus 로고
    • Uniqueness of complex and multidimensional independent component analysis
    • Theis F. Uniqueness of complex and multidimensional independent component analysis. Signal Process. 84 5 (2004) 951-956
    • (2004) Signal Process. , vol.84 , Issue.5 , pp. 951-956
    • Theis, F.1
  • 41
    • 11144235357 scopus 로고    scopus 로고
    • Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex functions
    • Yamada I., and Ogura N. Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex functions. Numer. Funct. Anal. Optim. 25 7-8 (2004) 593-617
    • (2004) Numer. Funct. Anal. Optim. , vol.25 , Issue.7-8 , pp. 593-617
    • Yamada, I.1    Ogura, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.