메뉴 건너뛰기




Volumn 16, Issue 2, 2004, Pages 355-382

Improving Generalization Performance of Natural Gradient Learning Using Optimized Regularization by NIC

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; NORMAL DISTRIBUTION; SIGNAL PROCESSING; STATISTICS;

EID: 0347029918     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976604322742065     Document Type: Article
Times cited : (13)

References (18)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (1974). A new look at the statistical model identification. IEEE trans. on Automatic Control, 16, 716-724.
    • (1974) IEEE Trans. on Automatic Control , vol.16 , pp. 716-724
    • Akaike, H.1
  • 2
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently
    • Amari, S. (1998). Natural gradient works efficiently. Neural Computation, 10, 251-276.
    • (1998) Neural Computation , vol.10 , pp. 251-276
    • Amari, S.1
  • 3
    • 21744450484 scopus 로고    scopus 로고
    • Statistical analysis of regularization constant - From Bayes, MDL, and NIC points of view
    • Amari, S., & Murata, N. (1997). Statistical analysis of regularization constant - From Bayes, MDL, and NIC points of view. Lecture Notes in Computer Science, 1240, 284-293.
    • (1997) Lecture Notes in Computer Science , vol.1240 , pp. 284-293
    • Amari, S.1    Murata, N.2
  • 4
    • 0034201611 scopus 로고    scopus 로고
    • Adaptive method of realizing natural gradient learning for multilayer perceptrons
    • Amari, S., Park, H., & Fukumizu, K. (2000). Adaptive method of realizing natural gradient learning for multilayer perceptrons. Neural Computation, 12, 1399-1409.
    • (2000) Neural Computation , vol.12 , pp. 1399-1409
    • Amari, S.1    Park, H.2    Fukumizu, K.3
  • 6
    • 0013309537 scopus 로고    scopus 로고
    • Online algorithms and stochastic approximations
    • D. Saad (Ed.). Cambridge: Cambridge University Press
    • Bottou, L. (1998). Online algorithms and stochastic approximations. In D. Saad (Ed.), Online learning and neural networks. Cambridge: Cambridge University Press.
    • (1998) Online Learning and Neural Networks
    • Bottou, L.1
  • 7
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • Gorman, R. P., & Sejnowski, T. J. (1988). Analysis of hidden units in a layered network trained to classify sonar targets. Neural Networks, 1, 75-89.
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gorman, R.P.1    Sejnowski, T.J.2
  • 8
    • 0040079861 scopus 로고    scopus 로고
    • On the problem in model selection of neural network regression in overrealizable scenario
    • Hagiwara, K. (2002). On the problem in model selection of neural network regression in overrealizable scenario. Neural Computation, 14, 1979-2002.
    • (2002) Neural Computation , vol.14 , pp. 1979-2002
    • Hagiwara, K.1
  • 9
    • 0000902690 scopus 로고
    • The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
    • J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.). San Mateo, CA: Morgan Kaufmann
    • Moody, M. E. (1992). The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems. In J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), Advances in Neural Information Processing Systems, 4 (pp. 847-854). San Mateo, CA: Morgan Kaufmann.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 847-854
    • Moody, M.E.1
  • 11
    • 0028544395 scopus 로고
    • Network information criterion - Determining the number of hidden units for an artificial neural network model
    • Murata, N., Yoshizawa, S., & Amari, S. (1994). Network information criterion - Determining the number of hidden units for an artificial neural network model. IEEE Trans. on Neural Networks, 5(6), 865-872.
    • (1994) IEEE Trans. on Neural Networks , vol.5 , Issue.6 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 12
    • 23044527137 scopus 로고    scopus 로고
    • Practical consideration on generalization property of natural gradient learning
    • Park, H. (2001). Practical consideration on generalization property of natural gradient learning. Lecture Notes in Computer Science, 2084, 402-409.
    • (2001) Lecture Notes in Computer Science , vol.2084 , pp. 402-409
    • Park, H.1
  • 13
    • 0034266869 scopus 로고    scopus 로고
    • Adaptive natural gradient learning algorithms for various stochastic models
    • Park, H., Amari, S., & Fukumizu, K. (2000). Adaptive natural gradient learning algorithms for various stochastic models. Neural Networks, 13, 755-764.
    • (2000) Neural Networks , vol.13 , pp. 755-764
    • Park, H.1    Amari, S.2    Fukumizu, K.3
  • 14
    • 0000198852 scopus 로고    scopus 로고
    • Natural gradient descent for on-line learning
    • Rattray, M., Saad, D., & Amari, S. (1998). Natural gradient descent for on-line learning. Physical Review Letters, 81, 5461-5464.
    • (1998) Physical Review Letters , vol.81 , pp. 5461-5464
    • Rattray, M.1    Saad, D.2    Amari, S.3
  • 15
    • 0018015137 scopus 로고
    • Modelling by shortest data description
    • Rissanen, J. (1978). Modelling by shortest data description. Automatica, 14, 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 17
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of Royal Statistical Society, 36, 111-133.
    • (1974) Journal of Royal Statistical Society , vol.36 , pp. 111-133
    • Stone, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.