메뉴 건너뛰기




Volumn 13, Issue 7, 2001, Pages 1625-1647

A theory for learning by weight flow on Stiefel-Grassman manifold

(1)  Fiori, Simone a  

a NONE

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001586142     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976601750265036     Document Type: Article
Times cited : (76)

References (52)
  • 3
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Amari, S.-i. (1998). Natural gradient works efficiently in learning. Neural Computation, 10, 251-276.
    • (1998) Neural Computation , vol.10 , pp. 251-276
    • Amari, S.-I.1
  • 4
    • 0033570817 scopus 로고    scopus 로고
    • Natural gradient learning for over- and under-complete bases in ICA
    • Amari, S.-i. (1999). Natural gradient learning for over- and under-complete bases in ICA. Neural Computation, 11, 1875-1883.
    • (1999) Neural Computation , vol.11 , pp. 1875-1883
    • Amari, S.-I.1
  • 5
    • 0000797290 scopus 로고
    • What is the computational goal of neurocortex?
    • C. Koch & J. L. Davis (Eds.), Cambridge, MA: MIT Press
    • Barlow, H. B. (1994). What is the computational goal of neurocortex? In C. Koch & J. L. Davis (Eds.), Large-scale neuronal theories of the brain. Cambridge, MA: MIT Press.
    • (1994) Large-scale Neuronal Theories of the Brain
    • Barlow, H.B.1
  • 6
    • 0029411030 scopus 로고
    • An information maximisation approach to blind separation and blind deconvolution
    • Bell, A. J., & Sejnowski, T. J. (1995). An information maximisation approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129-1159.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 8
    • 0002412868 scopus 로고
    • Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems
    • Brockett, R. W. (1991). Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems. Linear Algebra and Its Applications, 146, 79-91.
    • (1991) Linear Algebra and Its Applications , vol.146 , pp. 79-91
    • Brockett, R.W.1
  • 9
    • 0026954957 scopus 로고
    • Blind separation of sources: A nonlinear neural algorithm
    • Burel, G. (1992). Blind separation of sources: A nonlinear neural algorithm. Neural Networks, 5, 937-947.
    • (1992) Neural Networks , vol.5 , pp. 937-947
    • Burel, G.1
  • 11
    • 0345627997 scopus 로고    scopus 로고
    • A unified algorithm for principal and minor components extraction
    • Chen, T. P., Amari, S.-i., & Lin, Q. (1998). A unified algorithm for principal and minor components extraction. Neural Networks, 11(3), 385-390.
    • (1998) Neural Networks , vol.11 , Issue.3 , pp. 385-390
    • Chen, T.P.1    Amari, S.-I.2    Lin, Q.3
  • 12
    • 0033083243 scopus 로고    scopus 로고
    • Neural networks for blind separation with unknown number of sources
    • Cichocki, A., Karhunen, J., Kasprzak, W., & Vigario, R. (1999). Neural networks for blind separation with unknown number of sources. Neurocomputing, 24, 55-93.
    • (1999) Neurocomputing , vol.24 , pp. 55-93
    • Cichocki, A.1    Karhunen, J.2    Kasprzak, W.3    Vigario, R.4
  • 14
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36, 287-314.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 16
    • 0029013513 scopus 로고
    • Nonlinear higher-order statistical decorrelation by volume-conserving neural architectures
    • Deco, G., & Brauer, W. (1995). Nonlinear higher-order statistical decorrelation by volume-conserving neural architectures. Neural Networks, 8(4), 525-535.
    • (1995) Neural Networks , vol.8 , Issue.4 , pp. 525-535
    • Deco, G.1    Brauer, W.2
  • 22
    • 0033320487 scopus 로고    scopus 로고
    • "Mechanical" neural learning applied to blind source separation
    • Fiori, S. (1999). "Mechanical" neural learning applied to blind source separation. Electronics Letters, 35(22), 1963-1964.
    • (1999) Electronics Letters , vol.35 , Issue.22 , pp. 1963-1964
    • Fiori, S.1
  • 27
    • 0038927361 scopus 로고
    • A general exploratory projection pursuit network
    • Fyfe, C. (1995). A general exploratory projection pursuit network. Neural Processing Letters, 2(3), 17-19.
    • (1995) Neural Processing Letters , vol.2 , Issue.3 , pp. 17-19
    • Fyfe, C.1
  • 32
    • 0031999294 scopus 로고    scopus 로고
    • Independent component analysis by general non-linear Hebbian-like rules
    • Hyvärinen, A., & Oja, E. (1998). Independent component analysis by general non-linear Hebbian-like rules. Signal Processing, 64(3), 301-313.
    • (1998) Signal Processing , vol.64 , Issue.3 , pp. 301-313
    • Hyvärinen, A.1    Oja, E.2
  • 33
    • 0002580546 scopus 로고    scopus 로고
    • Neural approaches to independent component analysis and source separation
    • Karhunen, J. (1996). Neural approaches to independent component analysis and source separation. In Fourth European Symposium on Artificial Neural Networks (pp. 249-266).
    • (1996) Fourth European Symposium on Artificial Neural Networks , pp. 249-266
    • Karhunen, J.1
  • 40
    • 0002399288 scopus 로고
    • Neural networks, principal components, and subspaces
    • Oja, E. (1989). Neural networks, principal components, and subspaces. International Journal of Neural Systems, 1, 61-68.
    • (1989) International Journal of Neural Systems , vol.1 , pp. 61-68
    • Oja, E.1
  • 42
    • 0038927359 scopus 로고
    • Gram-schmidt neural nets
    • Orfanidis, S. J. (1990). Gram-Schmidt neural nets. Neural Computation, 2, 116-126.
    • (1990) Neural Computation , vol.2 , pp. 116-126
    • Orfanidis, S.J.1
  • 43
    • 0027663185 scopus 로고
    • Anti-Hebbian learning in topologically constrained linear networks: A tutorial
    • Palmieri, F., Zhu, J., & Chang, C. (1993). Anti-Hebbian learning in topologically constrained linear networks: A tutorial. IEEE Transactions on Neural Networks, 4(5), 748-761.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.5 , pp. 748-761
    • Palmieri, F.1    Zhu, J.2    Chang, C.3
  • 45
    • 0000184052 scopus 로고    scopus 로고
    • Statistical independence and novelty detection with information preserving non-linear maps
    • Parra, L., Deco, G., & Miesbach, S. (1996). Statistical independence and novelty detection with information preserving non-linear maps. Neural Computation, 8, 260-269.
    • (1996) Neural Computation , vol.8 , pp. 260-269
    • Parra, L.1    Deco, G.2    Miesbach, S.3
  • 46
    • 0034202523 scopus 로고    scopus 로고
    • Discriminant pattern recognition using transformation invariant neurons
    • Sona, D., Sperduti, A., & Starita, A. (2000). Discriminant pattern recognition using transformation invariant neurons. Neural Computation, 12(6).
    • (2000) Neural Computation , vol.12 , Issue.6
    • Sona, D.1    Sperduti, A.2    Starita, A.3
  • 47
    • 0000545783 scopus 로고
    • Richtungsfelder und fernparallelismus in n-dimensionalem manning faltigkeiten
    • Stiefel, E. (1935-1936). Richtungsfelder und fernparallelismus in n-dimensionalem manning faltigkeiten. Commentarii Math. Helvetici, 8, 305-353.
    • (1935) Commentarii Math. Helvetici , vol.8 , pp. 305-353
    • Stiefel, E.1
  • 50
    • 0026745682 scopus 로고
    • Modified hebbian learning for curve and surface fitting
    • Xu, L., Oja, E., & Suen, C. Y. (1992). Modified Hebbian learning for curve and surface fitting. Neural Networks, 5, 441-457.
    • (1992) Neural Networks , vol.5 , pp. 441-457
    • Xu, L.1    Oja, E.2    Suen, C.Y.3
  • 51
    • 0029196852 scopus 로고
    • Projection approximation subspace tracking
    • Yang, B. (1995). Projection approximation subspace tracking. IEEE Transactions on Signal Processing, 43, 1247-1252.
    • (1995) IEEE Transactions on Signal Processing , vol.43 , pp. 1247-1252
    • Yang, B.1
  • 52
    • 0000056917 scopus 로고    scopus 로고
    • Adaptive online learning algorithms for blind separation: Maximum entropy and minimal mutual information
    • Yang, H. H., & Amari, S.-i. (1997). Adaptive online learning algorithms for blind separation: Maximum entropy and minimal mutual information. Neural Computation, 9, 1457-1482.
    • (1997) Neural Computation , vol.9 , pp. 1457-1482
    • Yang, H.H.1    Amari, S.-I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.