메뉴 건너뛰기




Volumn 3410, Issue , 2005, Pages 547-560

Exploiting the trade-off - The benefits of multiple objectives in data clustering

Author keywords

Automatic determination of the number of clusters; Clustering; Evolutionary algorithms; Multiobjective optimization

Indexed keywords

ALGORITHMS; OPTIMIZATION; PARETO PRINCIPLE;

EID: 24344485715     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-31880-4_38     Document Type: Conference Paper
Times cited : (90)

References (19)
  • 7
    • 24344488919 scopus 로고    scopus 로고
    • Multiobjective clustering with automatic determination of the number of clusters
    • Department of Chemistry, UMIST, UK, August
    • J. Handl and J. Knowles. Multiobjective clustering with automatic determination of the number of clusters. Technical Report COMPYSYBIO-TR-2004-02, Department of Chemistry, UMIST, UK, August 2004.
    • (2004) Technical Report , vol.COMPYSYBIO-TR-2004-02
    • Handl, J.1    Knowles, J.2
  • 9
    • 24344503628 scopus 로고    scopus 로고
    • Evolutionary model selection in unsupervised learning
    • Y. Kim, W. N. Street, and F. Menczer. Evolutionary model selection in unsupervised learning. Intelligent Data Analysis, 6:531-556, 2002.
    • (2002) Intelligent Data Analysis , vol.6 , pp. 531-556
    • Kim, Y.1    Street, W.N.2    Menczer, F.3
  • 12
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm-based clustering technique
    • U. Maulik and S. Bandyopadhyay. Genetic algorithm-based clustering technique. Pattern Recognition, 33:1455-1465, 2000.
    • (2000) Pattern Recognition , vol.33 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 13
    • 13844255692 scopus 로고    scopus 로고
    • Genetic algorithms applied to multi-class clustering for gene expression data
    • H. Pan, J. Zhu, and D. Han. Genetic algorithms applied to multi-class clustering for gene expression data. Genomics, Proteomics & Bioinformatics, 1(4), 2003.
    • (2003) Genomics, Proteomics & Bioinformatics , vol.1 , Issue.4
    • Pan, H.1    Zhu, J.2    Han, D.3
  • 15
    • 0033204902 scopus 로고    scopus 로고
    • An empirical comparison of four initialization methods for the k -means algorithm
    • J. M. Pena, J. A. Lozana, and P. Larranaga. An empirical comparison of four initialization methods for the k -means algorithm. Pattern Recognition Letters, 20(10):1027-1040, 1999.
    • (1999) Pattern Recognition Letters , vol.20 , Issue.10 , pp. 1027-1040
    • Pena, J.M.1    Lozana, J.A.2    Larranaga, P.3
  • 16
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal on Machine Learning Research, 3:583-617, 2002.
    • (2002) Journal on Machine Learning Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 17
    • 0003414440 scopus 로고    scopus 로고
    • Estimating the number of clusters in a dataset via the Gap statistic
    • Department of Statistics, Stanford University, USA
    • R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a dataset via the Gap statistic. Technical Report 208, Department of Statistics, Stanford University, USA, 2000.
    • (2000) Technical Report , vol.208
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.