-
1
-
-
33845258121
-
Experimental realization of Einstein-Podolsky-Rosen gedankenexperiment; a new violation of Bell's inequalities
-
Aspect, A., Grangier, P. and Roger, G. (1982) Experimental realization of Einstein-Podolsky-Rosen gedankenexperiment; a new violation of Bell's inequalities. Phys. Rev. Lett. 49 91-94.
-
(1982)
Phys. Rev. Lett
, vol.49
, pp. 91-94
-
-
Aspect, A.1
Grangier, P.2
Roger, G.3
-
2
-
-
4243882278
-
On the problem of hidden variables in quantum mechanics
-
Bell, J. S. (1966) On the problem of hidden variables in quantum mechanics. Rev. Modern Phys. 38 447-452.
-
(1966)
Rev. Modern Phys
, vol.38
, pp. 447-452
-
-
Bell, J.S.1
-
3
-
-
4244023347
-
Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states
-
Bennett, C.H. and Wiesner, S.J. (1992) Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69 2881-2884.
-
(1992)
Phys. Rev. Lett
, vol.69
, pp. 2881-2884
-
-
Bennett, C.H.1
Wiesner, S.J.2
-
4
-
-
0344120636
-
An observable measure of entanglement for pure states of multi-qubit systems
-
Brennen, G. K. (2003) An observable measure of entanglement for pure states of multi-qubit systems. Quantum. Inf. Comput. 3 619-626.
-
(2003)
Quantum. Inf. Comput
, vol.3
, pp. 619-626
-
-
Brennen, G.K.1
-
6
-
-
13644252613
-
The moduli space of three-qutrit states
-
Briand, E., Luque, J.-G., Thibon, J.-Y. and Verstraete, F. (2004) The moduli space of three-qutrit states. J. Math. Phys. 45 4855-4867.
-
(2004)
J. Math. Phys
, vol.45
, pp. 4855-4867
-
-
Briand, E.1
Luque, J.-G.2
Thibon, J.-Y.3
Verstraete, F.4
-
7
-
-
84991955466
-
Algebraic measures of entanglement
-
Brylinski, R.K. and Chen, G, eds, Mathematics of quantum computation, Chapman and Hall/CRC
-
Brylinski, J.-L. (2002) Algebraic measures of entanglement. In: Brylinski, R.K. and Chen, G. (eds.) Mathematics of quantum computation, Computational Mathematics Series 3, Chapman and Hall/CRC 3-23.
-
(2002)
Computational Mathematics Series
, vol.3
, pp. 3-23
-
-
Brylinski, J.-L.1
-
8
-
-
27844435176
-
Invariant polynomial functions on k qudits
-
Brylinski, R. K. and Chen, G, eds, Mathematics of quantum computation, Chapman and Hall/CRC
-
Brylinski, J.-L. and Brylinski, R. (2002) Invariant polynomial functions on k qudits. In: Brylinski, R. K. and Chen, G. (eds.) Mathematics of quantum computation, Computational Mathematics Series 3, Chapman and Hall/CRC 277-286.
-
(2002)
Computational Mathematics Series
, vol.3
, pp. 277-286
-
-
Brylinski, J.-L.1
Brylinski, R.2
-
9
-
-
36049056258
-
Proposed Experiment to Test Local Hidden-Variable Theories
-
Clauser, J. F, Horne, M. A., Shimony, A. and Holt, R. A. (1969) Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 23 880-884.
-
(1969)
Phys. Rev. Lett
, vol.23
, pp. 880-884
-
-
Clauser, J.F.1
Horne, M.A.2
Shimony, A.3
Holt, R.A.4
-
10
-
-
0000953494
-
Three qubits can be entangled in two inequivalent ways
-
Dür, W., Vidal, G. and Cirac, J. I. (2001) Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62 062314.
-
(2001)
Phys. Rev. A
, vol.62
, pp. 062314
-
-
Dür, W.1
Vidal, G.2
Cirac, J.I.3
-
11
-
-
33947385649
-
Can quantum-mechanical description of physical reality be considered complete?
-
Einstein, A., Podolsky, B. and Rosen, N. (1935) Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47 777-780.
-
(1935)
Phys. Rev
, vol.47
, pp. 777-780
-
-
Einstein, A.1
Podolsky, B.2
Rosen, N.3
-
12
-
-
4444240533
-
A bipartite class of entanglement monotones for N-qubit pure states
-
Emary, C. (2004) A bipartite class of entanglement monotones for N-qubit pure states. J. Phys. A: Mathematical and General 37 8293-8302.
-
(2004)
J. Phys. A: Mathematical and General
, vol.37
, pp. 8293-8302
-
-
Emary, C.1
-
13
-
-
0000901347
-
Experimental Test of Local Hidden-Variable Theories
-
Fry, E. S. and Thompson, R. C. (1976) Experimental Test of Local Hidden-Variable Theories. Phys. Rev. Lett. 37 465-468.
-
(1976)
Phys. Rev. Lett
, vol.37
, pp. 465-468
-
-
Fry, E.S.1
Thompson, R.C.2
-
14
-
-
43449092161
-
-
Grassl, M. (2002) Entanglement and invariant theory. Transparencies of a talk reporting on joint work with T Beth, M. Rötteler and Yu. Makhlin. (Available at http://iaks-www.ira.uka.de/ home/grassl/paper/MSRI\_InvarTheory. pdf.)
-
Grassl, M. (2002) Entanglement and invariant theory. Transparencies of a talk reporting on joint work with T Beth, M. Rötteler and Yu. Makhlin. (Available at http://iaks-www.ira.uka.de/ home/grassl/paper/MSRI\_InvarTheory. pdf.)
-
-
-
-
15
-
-
11744385893
-
Computing local invariants of qubit systems
-
Grassl, M., Rötteler, M. and Beth, T. (1998) Computing local invariants of qubit systems. Phys. Rev. A (3)58 1833-1839.
-
(1998)
Phys. Rev. A
, vol.58
, Issue.3
, pp. 1833-1839
-
-
Grassl, M.1
Rötteler, M.2
Beth, T.3
-
16
-
-
0000799719
-
Multiparticle entanglement and its applications to cryptography
-
Kempe, J. (1999) Multiparticle entanglement and its applications to cryptography. Phys. Rev. A 60 910-916.
-
(1999)
Phys. Rev. A
, vol.60
, pp. 910-916
-
-
Kempe, J.1
-
17
-
-
7044276138
-
Coherent states, entanglement, and geometric invariant theory
-
quant-ph/0206012
-
Klyachko, A. A. (2002) Coherent states, entanglement, and geometric invariant theory, quant-ph/0206012
-
(2002)
-
-
Klyachko, A.A.1
-
19
-
-
43449116337
-
Sur les formes trilinéaires.
-
Le Paige, C. (1881) Sur les formes trilinéaires. C. R.Acad. Sci. Paris 92 1103-1105.
-
(1881)
C. R.Acad. Sci. Paris
, vol.92
, pp. 1103-1105
-
-
Le Paige, C.1
-
20
-
-
4243462237
-
Polynomial invariants of four qubits
-
Luque, J.-G. and Thibon, J.-Y. (2003) Polynomial invariants of four qubits. Phys. Rev. A 67 042303.
-
(2003)
Phys. Rev. A
, vol.67
, pp. 042303
-
-
Luque, J.-G.1
Thibon, J.-Y.2
-
23
-
-
0035981717
-
Global entanglement in multiparticle systems
-
Meyer, D. A. and Wallach, N. R. (2002) Global entanglement in multiparticle systems. J. Math. Phys. 43 4273-4278.
-
(2002)
J. Math. Phys
, vol.43
, pp. 4273-4278
-
-
Meyer, D.A.1
Wallach, N.R.2
-
24
-
-
0037243640
-
Classification of multipartite entangled states by multidimensional determinants
-
Miyake, A. (2003) Classification of multipartite entangled states by multidimensional determinants. Phys. Rev. A (3) 67 012108.
-
(2003)
Phys. Rev. A
, vol.67
, Issue.3
, pp. 012108
-
-
Miyake, A.1
-
26
-
-
27144446447
-
Constructing N-qubit entanglement monotones from anti-linear operators
-
Osterloh, A. and Siewert, J. (2004) Constructing N-qubit entanglement monotones from anti-linear operators. Phys. Rev. A 72 012337.
-
(2004)
Phys. Rev. A
, vol.72
, pp. 012337
-
-
Osterloh, A.1
Siewert, J.2
-
27
-
-
33746326137
-
Entanglement monotones and maximally entangled states in multipartite qubit systems
-
Osterloh, A. and Siewert, J. (2005) Entanglement monotones and maximally entangled states in multipartite qubit systems. Int. J. Quant. Inf. 4 531.
-
(2005)
Int. J. Quant. Inf
, vol.4
, pp. 531
-
-
Osterloh, A.1
Siewert, J.2
-
28
-
-
0043189876
-
The maximal entangled three-particle state is unique
-
Schlienz, J. and Mahler, G. (1996) The maximal entangled three-particle state is unique. Phys. Lett. A 224 39-44.
-
(1996)
Phys. Lett. A
, vol.224
, pp. 39-44
-
-
Schlienz, J.1
Mahler, G.2
-
29
-
-
0000456246
-
Description of entanglement
-
Schlienz, J. and Mahler, G. (1995) Description of entanglement. Phys. Rev. A 52 4396-4404.
-
(1995)
Phys. Rev. A
, vol.52
, pp. 4396-4404
-
-
Schlienz, J.1
Mahler, G.2
-
30
-
-
0036577113
-
Four qubits can be entangled in nine different ways
-
Verstraete, F., Dehaene, J., De Moor, B. and Verschelde, H. (2002) Four qubits can be entangled in nine different ways. Phys. Rev. A 65 052112.
-
(2002)
Phys. Rev. A
, vol.65
, pp. 052112
-
-
Verstraete, F.1
Dehaene, J.2
De Moor, B.3
Verschelde, H.4
-
31
-
-
5344229440
-
A fast algorithm for MacMahon's partition analysis
-
Xin, G. (2004) A fast algorithm for MacMahon's partition analysis. Electron. J. Combin. 11 R58.
-
(2004)
Electron. J. Combin
, vol.11
-
-
Xin, G.1
|