-
2
-
-
85015726990
-
-
e-print quant-ph/0008031
-
J.-L. Brylinski, e-print quant-ph/0008031.
-
-
-
Brylinski, J.-L.1
-
4
-
-
0036577113
-
-
F. Verstraete, J. Dehaene, B.D. Moor, and H. Verschelde, Phys. Rev. A 65, 052112 (2002).
-
(2002)
Phys. Rev. A
, vol.65
, pp. 052112
-
-
Verstraete, F.1
Dehaene, J.2
Moor, B.D.3
Verschelde, H.4
-
6
-
-
85015804960
-
-
e-print quant-ph/0206012
-
A.A. Klyachko, e-print quant-ph/0206012.
-
-
-
Klyachko, A.A.1
-
7
-
-
4043132188
-
-
C. Bennett, S. Popoescu, D. Rohrlich, J. Smolin, and A. Thap- liyal, Phys. Rev. A 63, 012307 (2001).
-
(2001)
Phys. Rev. A
, vol.63
, pp. 012307
-
-
Bennett, C.1
Popoescu, S.2
Rohrlich, D.3
Smolin, J.4
Thapliyal, A.5
-
8
-
-
85015795514
-
-
note
-
In the physics literature, the solution appears in Ref. [1], but an equivalent problem had been solved in classical invariant theory since at least 1881 [21,22], Note also that a problem equivalent to the classification of four-qubit states had been studied by Segre in 1922 [17], but he only obtained a partial classification.
-
-
-
-
9
-
-
85015768128
-
-
note
-
We note that a combinatorial method for computing invariants of fourth-rank tensors is proposed in Ref. [10]. The point in the present paper is that we can prove that our system of invariants is complete.
-
-
-
-
10
-
-
85015768326
-
-
e-print math-ph/0208010
-
V. Tapia, e-print math-ph/0208010.
-
-
-
Tapia, V.1
-
13
-
-
85015745776
-
-
note
-
This is a tedious method. With the help of computer algebra system, the Hubert series is more straightforwardly obtained by a residue calculation. Similar computations [for SU(2) and U(2) invariants] appear in Ref. [14].
-
-
-
-
15
-
-
85015719995
-
-
Cayley actually considered several different notions under the same generic name, see Ref. [16]
-
Cayley actually considered several different notions under the same generic name, see Ref. [16].
-
-
-
-
18
-
-
0003653326
-
-
Cambridge University Press, Cambridge, Cambridge
-
P. Olver, Classical Invariant Theory (Cambridge University Press, Cambridge, Cambridge, 1999).
-
(1999)
Classical Invariant Theory
-
-
Olver, P.1
-
19
-
-
0004057454
-
-
Birkhäuser, Boston
-
I. Gelfand, M. Kapranov, and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants (Birkhäuser, Boston, 1994).
-
(1994)
Discriminants, Resultants, and Multidimensional Determinants
-
-
Gelfand, I.1
Kapranov, M.2
Zelevinsky, A.3
-
23
-
-
85015803788
-
-
note
-
2 will not depend on these choices.
-
-
-
-
24
-
-
85015803793
-
-
note
-
For five qubits, the generic orbits depend on 16 free parameters, and for eight qubits, the moduli space would be of dimension 231.
-
-
-
-
27
-
-
85015772454
-
-
note
-
4 on the four-dimensional vector space spanned by a,b,c,d.
-
-
-
|